基于时空局部学习的集成自适应软测量方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH89 TP274

基金项目:

国家自然科学基金(62163019)、云南省应用基础研究计划面上项目(202101AT070096)资助


Ensemble adaptive soft sensor method based on spatio-temporal local learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    集成软测量方法已被广泛应用于流程工业关键质量参数实时估计。 但是,常规集成建模方法在基模型构建过程中往往 局限于挖掘样本之间的空间关系,忽略了样本间的时序关系,从而导致过程局部状态挖掘不充分、基模型间多样性不足等问题。 其次,传统软测量方法由于缺乏自适应机制而无法有效处理过程时变特征,从而导致模型性能发生退化。 为此,提出一种基于 时空局部学习(STLL)的集成自适应软测量方法。 该方法首先通过移动窗口、即时学习技术分别挖掘样本间的时序关系和空间 关系,并采用统计假设检验实现冗余状态剔除,进而构建多样性的时空局部高斯混合回归(GMR)模型。 然后,基于在线选择性 集成策略实现局部预测结果的自适应融合。 此外,引入双重自适应机制以缓解模型性能退化问题。 实验结果显示,相较于非自 适应全局 GMR 模型、时间局部学习集成 GMR 模型、空间局部学习集成 GMR 模型,所提方法在金霉素发酵过程中的预测精度 分别提升了 70. 3% ,14. 9% ,27. 8% ;在脱丁烷塔过程中,分别提升了 31. 9% ,21. 2% ,19. 3% 。

    Abstract:

    Ensemble learning soft sensors have been widely used to estimate key quality parameters in the process industry. However, the conventional ensemble modeling methods are often limited to mining the temporal relationships between samples for building the base models while ignoring the spatial relationships between samples. This may lead to problems such as insufficient local state mining of the process and insufficient diversity among base models. In addition, traditional soft sensor methods cannot effectively deal with the timevarying characteristics of the process due to the lack of adaptive mechanisms, which leads to the degradation of the model performance. Therefore, an ensemble adaptive soft sensor method based on the spatio-temporal local learning (STLL) is proposed. Firstly, the method mines the temporal and spatial relationships of process data, and the redundant states are removed by using statistical hypothesis testing. Then, a set of diverse spatial-temporal local Gaussian mixture regression models ( GMR) is formulated. Then, the local prediction results are combined adaptively based on an online selective ensemble strategy. Besides, a dual-updating strategy is proposed for alleviating the model performance degradation. Compared to the non-adaptive global GMR, temporal local learning based ensemble GMR, spatial local learning based ensemble GMR, experimental results show that the prediction accuracy of the proposed STLL approach is improved by 70. 3% , 14. 9% , and 27. 8% in an industrial chlortetracycline fermentation process, while it is improved by 31. 9% , 21. 2% , and 19. 3% in an industrial debutanizer process.

    参考文献
    相似文献
    引证文献
引用本文

黄 成,金怀平,王 彬,钱 斌,杨 彪.基于时空局部学习的集成自适应软测量方法[J].仪器仪表学报,2023,44(1):231-241

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码