采用自适应背景聚类的激光雷达与相机外参标定优化方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V441 TH744

基金项目:

国家自然科学基金(52005500,62173331)、天津市教委科研计划项目(2020KJ013)资助


Optimization method for external parameters calibration of lidar and camera using adaptive background clustering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在复杂外部环境下激光雷达外参标定过程中遇到的标定板三维点云提取不准确的问题,提出一种基于背景聚类的 激光雷达和相机外参标定优化方法,避免了在整个三维点云中盲目检测标定板点云,而导致标定结果存在较大误差以及需要人 工手动纠正错误特征点的问题。 该方法利用无标定板的背景点云与有标定板的目标点云之间部分空间域内的密度差异性,通 过自适应空间阈值模型获得标定板点云与背景点云之间的差异系数 K,然后聚类两点云中的部分三维点,完成标定板的三维点 云提取。 实验证明,该方法可以在复杂环境中准确高效地提取标定板三维点云,从而提高激光雷达和相机外参标定的准确性, 在此基础上点云正确投影比例可达 97. 43% ,与对比方法相比投影误差降低 25. 33% 左右。

    Abstract:

    To address the inaccurate extraction of 3D point cloud of the calibration plate encountered in the process of external parameter calibration of lidar in complex external environment, an optimization method of external parameter calibration of lidar and camera based on background clustering is proposed. The blind detection of the point cloud of the calibration plate is avoided in the whole threedimensional point cloud, which would lead to large error in the calibration results and the need to manually correct the wrong feature points. This method uses the density difference between the background point cloud without calibration plate and the target point cloud with calibration plate in some spatial domains, and obtains the difference coefficient K between the point cloud of calibration plate and the background point cloud through the adaptive spatial threshold model. Then, some three-dimensional points in the two-point cloud are clustered to complete the three-dimensional point cloud extraction of the calibration plate. Experimental results show that this method can accurately and efficiently extract 3D point cloud of calibration plate in complex environment to improve the accuracy of laser radar and camera external parameter calibration. On this basis, the correct projection proportion of point cloud can reach 97. 43% , and the projection error is reduced by about 25. 33% compared with other methods.

    参考文献
    相似文献
    引证文献
引用本文

吴 军,袁少博,祝玉恒,郭润夏,张晓瑜.采用自适应背景聚类的激光雷达与相机外参标定优化方法[J].仪器仪表学报,2023,44(2):230-237

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-07
  • 出版日期:
文章二维码