基于卡尔曼预测的差动共焦轮廓跟踪测量方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH742

基金项目:

国家重点研发计划课题(2017YFA0701203)、国家杰出青年科学基金(61827826)项目资助


Differential confocal profile tracking measurement method based on Kalman prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轴向扫描式差动共焦测量法(ASDCM)测量轮廓效率低下问题,提出一种基于卡尔曼预测的差动共焦轮廓跟踪测 量方法。 该方法使用激光差动共焦轴向响应曲线数百纳米量程的线性区间实现了表面连续轮廓高精度线性传感测量,提高了 测量效率;同时引入基于卡尔曼预测器的轮廓跟踪原理利用已测轮廓点数据对未测表面预测并跟踪,扩展了线性传感轮廓测量 法测量范围。 实验结果表明,该方法相对于 ASDCM 法测量效率提升了 8 倍,且实现了轮廓 PV 值大于线性传感测量范围的标 准椭圆柱高精度跟踪测量,激光聚变靶丸内轮廓圆度重复测量标准差达 3 nm。 为精密元器件表面连续轮廓的高精度、快速、无 损测量提供了一种高质量方法。

    Abstract:

    It is difficult to realize high efficiency of axial scanning differential confocal measurement (ASDCM). In this article, a differential confocal profile tracking measurement method based on Kalman prediction is proposed. In this method, the linear range of hundreds of nanometers of laser differential confocal axial response curve is used for high-precision linear sensing measurement of the continuous surface profile, which improves the measurement efficiency. Meanwhile, the Kalman predictor profile tracking method is introduced to predict and track the unmeasured surface using the measured profile point data, which expands the range of linear sensing profile measurement. Compared with the ASDCM, experimental results show that the measurement efficiency of this method is improved by 8 times, the high-precision tracking measurement of the standard elliptical column with the PV value of the outer profile is greater than the linear sensing measurement range, and the repeated measurement standard deviation of the roundness of the laser inertial confinement fusion capsule is 3 nm. It provides a high quality method for high precision, fast and nondestructive measurement of continuous surface profile of rotary precision components.

    参考文献
    相似文献
    引证文献
引用本文

罗 杰,刘子豪,刘一郡,赵维谦,王 允.基于卡尔曼预测的差动共焦轮廓跟踪测量方法[J].仪器仪表学报,2023,44(3):25-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-11
  • 出版日期:
文章二维码