多计算任务调度优化的机载智能状态监测单元
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V247. 1 TH707

基金项目:

国家自然科学基金(62201178)项目资助


Airborne intelligent condition monitoring unit based on multiple computing tasks scheduling optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为保障无人机的飞行安全,机载智能状态监测得到重点关注。 然而,受机载计算资源约束,监测多个关键参数的多任务 场景给机载实时计算带来较大挑战。 因此,本文提出有限现场可编程门阵列(FPGA)资源下多计算任务调度优化的机载智能 状态监测单元,首先,基于堆叠长短期记忆网络建立不同监测参数对应尺度的监测模型,并利用 FPGA 构建各模型的定制计算 加速单元。 然后,建立 FPGA 资源和模型计算时间联合约束的多任务调度优化方法,获取定制计算加速单元部署和计算调度策 略,最小化总任务完成时间。 最后,根据上述策略在机载计算平台中部署指定尺度的加速单元,完成多计算任务调度。 采用实 际飞行数据对机载智能状态监测单元进行验证。 结果表明,该单元能够高效完成多个状态监测任务的实时计算,较其它基于 FPGA 的多任务计算方法,计算效率提升优于 16. 08% 。

    Abstract:

    To ensure the flight safety of unmanned aerial vehicles (UAV), the airborne intelligent condition monitoring has received a lot of attention. However, constrained by airborne computing resources, multi-task scenarios that monitor multiple key parameters pose a greater challenge to airborne real-time computing. To address this issue, this article proposes an airborne intelligent condition monitoring unit with multi-task scheduling optimization under limited field programmable gate array ( FPGA) resource. Firstly, the monitoring models of different scales corresponding to different monitoring parameters are established based on stacked long short-term memory, and the custom computing acceleration units for each model are constructed by using FPGA. Secondly, a multi-task scheduling optimization method with joint constraints of FPGA resources and model computing time is proposed to obtain customized computing acceleration unit deployment and computing scheduling strategies, which minimizes the completion time of all tasks. Finally, according to the above strategies, the acceleration units of specified scales are deployed in the airborne computing platform to complete multi-task scheduling and computing. Real flight data are used to verify the proposed method. The results show that the unit can efficiently perform real-time calculation for multiple condition monitoring tasks. The results show that the unit can efficiently perform real-time calculation for multiple condition monitoring tasks. Comparing with other FPGA-based computing methods, theefficiency is improved by 16. 08% .

    参考文献
    相似文献
    引证文献
引用本文

康守强,李 坤,王本宽,刘大同.多计算任务调度优化的机载智能状态监测单元[J].仪器仪表学报,2023,44(3):58-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-11
  • 出版日期:
文章二维码