基于对比学习辅助训练的超短期风功率预测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP181 TH702

基金项目:

国家电网公司总部科技项目(51907025)资助


Ultra-short-term wind power forecasting based on contrastive learning-assisted training
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用深度学习方法提高风功率超短期预测精度能够给电力系统日内机组组合、超短期经济调度、和电力备用安排提 供更精确的风功率预测结果,对进一步提高电力系统运行的安全性和经济性具有重要意义。 本文针对当前深度学习特征提 取模块对时序曲线中的隐式特征和趋势变化的相似性提取不充分的问题,提出一种基于对比学习辅助训练的超短期风功率 预测模型,主要包括输入模块、特征提取模块、对比学习辅助模块和回归模块。 该模型通过自监督的对比学习算法自主生成 正负样本、并以拉开正负样本的映射空间距离为目标来辅助训练特征提取模块的网络参数,使得特征提取模块的映射结果 中包含了输入信息相似性的隐式特征,进而减少数据冗余信息、增强样本关联性,最终提高风功率预测精度。 实验结果表 明,对比学习方法的平均绝对误差比长短期记忆网络和轻量梯度提升机方法分别下降了 19. 9% 和 6. 5% ,有效提高了风功率 预测精度。

    Abstract:

    The accuracy improvement of ultra-short-term wind power forecast with deep learning methods is of great significance for intraday unit commitment, ultra-short-term economic dispatch, and reserve scheduling of the power systems, which can further enhance the safety and efficiency. To address the problem in the existing feature extraction models that the similarity of implicit features and changing trends in time series curves have not been adequately extracted, this article proposes an ultra-short-term wind power forecast model based on contrastive learning-assisted training, which mainly consists of an input encoding module, a feature extraction module, a contrastive learning module, and a regression module. The self-supervised contrastive learning module autonomously generates positive and negative samples and enlarges the distance between the positive and negative samples in the projection space, which help to extract the implicit features of the similarity of the input information. In this way, the redundant information is reduced, the sample correlation is enhanced, and the accuracy of wind power forecast is ultimately improved. Compared with LSTM and Lightgbm methods, experimental results show that the mean absolute error of the proposed method is decreased by 19. 9% and 6. 5% , which effectively increase the wind power prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王 颖,朱南阳,谢浩川,李 健,张凯锋.基于对比学习辅助训练的超短期风功率预测方法[J].仪器仪表学报,2023,44(3):89-97

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-11
  • 出版日期:
文章二维码