基于关键点检测的航空发动机螺栓安装缺陷自动化检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH862 TP391. 4

基金项目:


An automatic detection method of aero-engine bolt installation defects based on key points detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对航空发动机螺栓存在背景复杂、目标小、且精细特征不明显的问题,本文研究了一种基于关键点检测的航空发动机 螺栓安装缺陷的自动化检测方法。 首先设计了基于 Faster RCNN 和改进 CPN(AD-CPN)的级联卷积神经网络,实现了图像中螺 栓及二维关键点的检测,可判断该螺栓是否脱落、漏装。 为进一步检测螺栓的三维安装缺陷,通过欧氏距离选择策略对已检测 出的关键点进行双目匹配、筛选以获得检测点对,最后对检测点对三维重构,并计算出螺栓的实际长度,从而判断螺栓是否错 装。 实验结果表明,相较于 CPN,AD-CPN 的 mAP、AP50 、AP75 分别提升了 2. 9% 、3. 3% 、4% ;螺栓测量长度的相对平均误差约为 3. 0% ,可见该方法具有较高的缺陷检测准确率,有效保障了航空发动机的安全运行。

    Abstract:

    In view of the problems of complex background, small target and inconspicuous fine features of aero-engine bolts, an automated detection algorithm of aero-engine bolt installation detection based on key points detection is proposed. First, a cascaded convolutional neural network based on the Faster RCNN and the improved CPN (AD-CPN) is proposed to achieve the detection of bolts and 2D key points which can determine whether the bolt has fallen off or missed. To further detect the 3D installation detection of the bolt, the Euclidean distance selection strategy is introduced to match and screen the key points to obtain the detected point pairs. Finally, the 3D coordinates of the key points are calculated by using binocular stereo vision technology. In this way, it can judge whether the bolt is wrongly installed. Compared with CPN, the mAP,AP50 , and AP75 of AD-CPN are improved by 2. 9% , 3. 3% , and 4% , respectively. In addition, the relative average error of bolt measurement length is approximately 3. 0% . It can be seen that the algorithm could enhance the accuracy of detection, and ensure the safe operation of aero-engines, which has great practical significance.

    参考文献
    相似文献
    引证文献
引用本文

辛佳雯,王 睿,谢艳霞,孙军华.基于关键点检测的航空发动机螺栓安装缺陷自动化检测方法[J].仪器仪表学报,2023,44(3):98-106

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-11
  • 出版日期:
文章二维码