基于自注意力机制的深度学习模拟电路故障诊断
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH407 TN37

基金项目:

东莞市核心技术攻关前沿项目(2019622101006)、深圳市科技计划项目(JCYJ20180307123857045)、深圳信息职业技术学院科研项目(SZIIT2022KJ019)资助


A fault diagnosis algorithm for analog circuits based on self-attention mechanism deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模拟电路是集成电路中的重要组成部分,基于深度学习技术对模拟电路发生的故障进行检测,并精准识别故障的类型 是当前集成电路测试领域的研究热点。 针对模拟集成电路故障检测存在困难的问题,利用人工智能在图像识别领域、语音分类 领域的先进技术,提出了基于自注意力机制检测 Sallen-Key 型低通滤波电路故障的深度学习模拟电路故障检测方案,将输出信 号采样成音频信号,并将其输入到自注意力变换网络的音频分类模型中进行训练、测试和优化。 结果表明,通过自注意力变换 网络音频分类在 9 种不同的故障类型诊断中,平均准确率达 93. 1% ,最高准确率达 98. 1% 。 该模型收敛速度更快,具有较强的 模拟电路故障检测能力。

    Abstract:

    Analog circuit is an essential part of the integrated circuit. One of the current research hotspots in integrated circuit testing is the detection of faults occurring in analog circuits and the accurate identification of fault types based on deep learning techniques. To address the difficulties in fault detection of analog integrated circuits, the advanced achievements of artificial intelligence in the field of image recognition and speech classification is referenced and an analog circuit fault detection idea based on a deep learning algorithm of self-attention mechanism is proposed, which can be used to detect faults in Sallen-Key low-pass filter circuits. The output signal is sampled into an audio signal and fed into an audio classification model based on a self-attentive transform network for training, testing, and optimization. The results show that fault detection based on the self-attentive mechanism audio classification has an average accuracy of 93. 1% and a maximum accuracy of 98. 1% . Nine different fault types can be detected. The model converges fast and can detect faults in analog circuits, which thoroughly verifies the feasibility of the proposed idea.

    参考文献
    相似文献
    引证文献
引用本文

杨东儒,魏建文,林雄威,刘 明,鲁圣国.基于自注意力机制的深度学习模拟电路故障诊断[J].仪器仪表学报,2023,44(3):128-136

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-11
  • 出版日期:
文章二维码