摘要:针对电站负荷变化时风机状态预测模型精度降低的问题,提出一种基于卷积神经网络(CNN) 、长短时记忆( LSTM) 网络与注意力机制(AM)的动态集成状态预测方法。 首先,利用 CNN 将样本数据划分为边界有重叠的不同类别,实现风机 运行状态的软分类;其次,在传统的 LSTM 网络的中引入 AM 层,构造不同工况下的 LSTM-AM 子模型,并将 CNN 输出的软分 类标签作为初始权值,使用遗传算法对权值偏置进行搜索寻优;最后,对各个子模型的输出值加权求和,得到风机不同运行 状态下的集成预测值。 实验结果表明,相较各个 LSTM-AM 子模型和单一 LSTM-AM 模型,本文提出的基于 CNN-LSTM-AM 的 动态集成模型在电站风机变负荷运行时可以将预测结果的均方根误差分别减小 11. 5% 和 22. 3% ,说明此模型具有更好的鲁 棒性和适用性。