基于驾驶员模型的六足机器人自主 / 协同决策
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP24 TH39

基金项目:

国家自然科学基金青年项目(51905136)、国家自然科学基金面上项目(52175012)、国家自然科学基金重点项目(91948202)资助


Hexapod robot self/ collaboration decision based on the driver′s prior model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    重载六足机器人在野外地形环境移动作业时的决策智能水平亟待提高。 然而,当机器人在尚未形成合理的决策结构层 次时,直接采用其与环境进行交互方式进行常规的强化学习训练,将导致机器人的行为决策过于发散。 因此,本文首先利用一 种符合驾驶员决策逻辑的分步训练神经网络,得到驾驶员的决策经验模型,使机器人快速形成自主决策智能。 此外,为融合人 机决策优势,本文基于合作博弈理论,提出一种消除人机协同决策指令冲突的方法。 搭建面向重载六足机器人人机协同决策的 半物理仿真实验系统,开展实验的结果表明,机器人通过学习驾驶员先验模型和自主训练,其决策效果可接近驾驶员决策水平, 同时人机协同决策指令可有效弥补单智能体决策指令的缺陷,在规则沟壑地形下协同决策指令的碰撞率指标优于驾驶员单智 能体指令 23. 8% ,障碍地形下协同决策指令的能量消耗指标优于机器自主单智能体指令 34. 1% 。

    Abstract:

    The level of decision-making intelligence of heavy-duty hexapod robots in the field terrain needs to be improved. However, if robots have not yet formed a reasonable decision structure level, the conventional decision-making reinforcement learning which is directly interact with the environment, will lead to the robot′s decision-making being too divergent. Therefore, this article first obtains the driver′s decision-making experience model through a step-training neural network which conforms to the driver′s decision-making habits. Hence, the robot can quickly form decision-making intelligence. In addition, to better play the advantages of human-robot decision-making, this article proposes a method to eliminate the conflict of human-robot coordinated decision-making commands based on the cooperative game theory. A semi-physical simulation experiment system for human-machine collaborative decision-making of heavyduty hexapod robots is designed and established. After carrying out experimental verification around the proposed methods, results show that the robot can approach the driver decision-making effect by learning the driver′s prior model and reinforcement training, and the effect of the human-robot collaborative decision-making commands can also make up for the defects in unilateral decision-making. In the regular ditches terrain, the collision index of the collaborative decision commands is 23. 8% better than that of the single driver agent commands; in the obstacle terrain, the energy consumption index of the collaborative decision commands is better than that of the single robot agent commands by 34. 1% .

    参考文献
    相似文献
    引证文献
引用本文

陈潇磊,尤 波,李佳钰,丁 亮,董 正.基于驾驶员模型的六足机器人自主 / 协同决策[J].仪器仪表学报,2023,44(4):91-100

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-12
  • 出版日期:
文章二维码