基于可解释深度学习的单通道脑电跨被试疲劳驾驶检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391 R741. 044 TH79

基金项目:

河南省重点研发与推广专项(222102210164)资助


Cross-subject driver fatigue detection from single-channel EEG with an interpretable deep learning model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    脑电信号被认为是检测驾驶员疲劳状态的最佳生理信号之一。 然而,由于不同被试者和不同记录时段的脑电信号差异 很大,设计一个无校准的脑电疲劳检测系统仍然具有挑战性。 近年来,虽然开发了许多深度学习方法来解决这个问题并取得了 重大进展,但是深度学习模型的黑盒效应使得模型决策不可信赖。 为此,本文提出了一种可解释深度学习模型,用于从单通道 脑电信号中检测跨被试疲劳状态。 该模型具有紧凑的网络结构,首先设计浅层 CNN 提取 EEG 特征,然后引入自适应特征重新 校准机制增强提取特征的质量,最后通过 LSTM 网络将时间特征序列与分类相关联。 模型分类决策的可解释信息则是由 LSTM 输出隐藏状态的可视化技术实现的。 在持续驾驶任务的公开脑电数据集上进行大量跨被试实验,该模型的分类平均准确率最 高达到 76. 26% 。 相比于先进的紧凑型深度学习模型,该模型有效降低了参数量和计算量。 可视化结果表明该模型已发现神经 生理学上可靠的解释。

    Abstract:

    Electroencephalography (EEG) has been considered as one of the best physiological signals to detect drivers′ mental fatigue. However, EEG signals vary significantly among different subjects and recording sessions, and it is still challenging to design a calibration-free system for EEG fatigue detection. In recent years, many deep learning-based methods have been developed to address this issue and achieve significant progress. However, the “ black-box” nature of deep learning models makes their decisions mistrust. Therefore, an interpretable deep learning model is proposed to recognize cross-subject fatigue states from single-channel EEG signals in this article. The model has a compact network structure. Firstly, a shallow CNN is designed to extract the EEG features. Then, the adaptive feature recalibration mechanism is introduced to enhance the features extraction ability. Finally, the time series of extracted features are linked to classification with LSTM. The interpretable information of the classified decision is achieved through a visualization technique that is taking advantage of hidden states output by the LSTM layer. Extensive cross-subject experiments are implemented on an open EEG dataset with a sustained-attention driving task, and the proposed model achieve the highest average accuracy of 76. 26% . In addition, compared with the advanced compact deep learning models, the parameters and computation are effectively reduced. Visualization results indicate that the proposed model has discovered neuro-physiologically reliable interpretation.

    参考文献
    相似文献
    引证文献
引用本文

冯 笑,代少升,黄 炼.基于可解释深度学习的单通道脑电跨被试疲劳驾驶检测[J].仪器仪表学报,2023,44(5):140-149

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-08-17
  • 出版日期:
文章二维码