摘要:压力容器气体泄漏智能检测识别技术易受多种因素干扰,且智能检测模型需要大量的监测数据训练。 而在实际工业环 境中,可用数据特别是数据标签十分稀缺,为了克服多工况干扰和数据缺少标签信息等问题,提出了一种利用迁移学习的无监 督变工况智能检测技术。 首先采集实验室环境下的多种泄漏的样本,选择 3 种不同压力工况下将数据分为有标签的源域和无 标签的目标域;其次设计卷积特征提取器,针对两个域的边缘分布和条件分布,提出一种改进的联合分布适应机制,并进一步改 进了分布差异度量,以增强邻域混淆。 在 6 个迁移学习任务上的实验结果验证了该方法的有效性,对比经典域自适应算法有更 高的准确率。