基于多任务学习的视频异常检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 41 TH701

基金项目:

广东省基础与应用基础研究基金(2021B1515120064)项目资助


Video anomaly detection method based on multi task learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对异常事件位于图像前景的某个局部区域,且背景区域对于异常检测存在干扰的问题,提出了一种多任务异常检测 双流模型,模型架构包含未来帧预测网络和光流重构网络。 首先利用前景检测算法获取自然图像和光流图像的目标区域,再将 选取的区域送入到编码-解码网络完成未来帧预测和运动重构,对运动特征和表观特征进行提取,最后,使用深度概率网络给 出的概率值作为判断异常的决策,并与重构损失及预测损失相结合来判断视频的异常性。 本文针对大型场景的 3 个视频监控 数据集(UCSD 行人数据集、Avenue、Shanghai Tech)对本文提出的模型进行了异常性评估,所提出的方法在 3 个数据集上的 AUC 值分别为 97. 4% ,86. 4% ,73. 4% 。 与现有工作相比,本文的模型架构简洁且易于训练,异常检测结果更加准确。

    Abstract:

    To address the problem of anomalous events occurring in a specific local region of the foreground in an image, with the background region posing interference for anomaly detection, proposes a dual-stream multi-task anomaly detection model. The model architecture consists of a future frame prediction network and an optical flow reconstruction network. Firstly, the optical flow information of the video frame image is extracted by the deep optical flow network, and the foreground detection algorithm is used to obtain the foreground object region of the natural image and the optical flow image. Secondly, the encoding-decoding network is used to complete the future frame prediction and motion reconstruction, and the motion features and apparent features are extracted. Finally, the deep probability network is used to give the probability as the decision to judge the anomaly, and it is combined with the reconstruction loss and the prediction loss to determine the anomalous nature of the images. In this article, the anomalousness of the proposed model is evaluated on three video surveillance datasets (UCSD pedestrian dataset, Avenue, Shanghai Tech) of large scenes, and the proposed method achieves AUC values of 97. 4% , 86. 4% and 73. 4% on the three datasets, respectively. Compared with existing works, the proposed model architecture is simple and easy to train, and the anomaly detection results are more accurate.

    参考文献
    相似文献
    引证文献
引用本文

常兴亚,武云鹤,陈东岳,邓诗卓.基于多任务学习的视频异常检测方法[J].仪器仪表学报,2023,44(8):21-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-19
  • 出版日期:
文章二维码