基于多尺度特征的管道环焊缝定位方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH878

基金项目:

国家自然科学基金青年基金(62101356)项目资助


Research on the localization method of pipeline girth weld based on multi-scale feature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    环焊缝是管道检测数据分析的重要参照物,可用于修正里程轮的累积误差,因此,标定环焊缝是管道漏磁内检测数据分 析的必要环节。 本文结合漏磁数据的特征和环焊缝在管壁上的空间分布特征,提出一种具有多尺度感受野的轻量化卷积神经 网络模型。 模型利用具有单传感器感受野的轴向一维卷积和具有周向全局感受野的周向环形卷积,使得环焊缝特征得到了有 效提取。 借鉴标签平滑的思想,对样本标签进行了增广设计。 此外,对损失函数、激活函数也进行了优化设计,最终实现对环焊 缝的智能定位。 最后,从多种管径的在役管道检测数据中收集了 5 676 个样本,对模型进行了训练和评估。 实验结果显示,模 型具有较好收敛稳定性,在测试集上的精度达到了 93. 90% ,召回率达到了 94. 79% 。 此外,利用未参与模型训练的 Φ610 管道 漏磁内检测数据,对模型进行了应用测试,模型同样表现出了较好的鲁棒性,其 F1 值达到了 0. 93,说明模型具有较好的泛化能 力,具备一定的工程应用价值。

    Abstract:

    Girth weld is an important reference for the pipeline test data analysis which can be used to correct cumulative errors of odometer wheel. Thus, girth weld localization is the necessary part in test data analysis task. In this article, a lightweight convolution neural network with multi-scale receptive field is proposed, which is based on the magnetic flux leakage (MFL) data feature and the girth weld spatial distribution characteristics on the wall of pipeline. The features of girth weld can be extracted efficiently due to the axial 1D convolution with single sensor receptive field and circular ring convolution with circular global receptive field. Inspired by the label smoothing, the sample label is augmented. Moreover, some optimization design for loss function and activation function are also achieved. And a girth weld intelligent localization model is established. Finally, the model is trained and evaluated by the dataset including 5 676 samples that collected from various pipelines on-line MFL inspection data. The experiment results show that model has good convergency stability, and the test precision and recall rate reach 93. 90% and 94. 79% , respectively. Furthermore, the model is tested by MFL data of Φ610 pipeline which never participate in model training. The F1 score reaches 0. 93 which shows that the model has a good robustness and generalization ability, and has certain application engineering value.

    参考文献
    相似文献
    引证文献
引用本文

赵东升,杨理践,耿 浩,郑福印,田 野.基于多尺度特征的管道环焊缝定位方法研究[J].仪器仪表学报,2023,44(8):118-129

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-19
  • 出版日期:
文章二维码