基于 BP 神经网络与 H∞ 滤波的锂电池SoH-SoC 联合估计研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM912 TH89

基金项目:

国家自然科学基金项目(62373137)、河南省高校重点科研项目(23A470006)资助


Joint estimation of SoH-SoC for lithium battery based on BP neural network and H infinity filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂电池健康状态(SoH)和荷电状态(SoC)的精确估计是新能源汽车安全运行的重要保障。 针对 SoH-SoC 联合估计精度 低、鲁棒性差的问题,提出一种基于变学习率 BP 神经网络和自适应渐消扩展 H∞ 滤波的 SoH-SoC 联合估计方法。 首先,提出一 种基于单位充电压差时间间隔的新型 SoH 特征参数;其次,通过设计新型变学习率 BP 神经网络,提高传统 BP 网络误差收敛速 度及缩短权值寻优时间;最后,通过设计新型自适应衰减因子对传统扩展 H∞ 滤波误差协方差矩阵进行加权,建立自适应渐消 扩展 H∞ 滤波算法,减小陈旧量测值对估计结果的影响,提高扩展 H∞ 滤波的估计精度及鲁棒性。 实验结果表明,本文所提算法 SoH 估计误差小于 0. 35% ,SoC 估计误差小于 0. 5% ,展现出较高的估计精度和鲁棒性。

    Abstract:

    Accurate estimation of the lithium batteries′ state of health (SoH) and state of charge (SoC) is an important guarantee for the safe operation of new energy vehicles. Aiming at the low accuracy and poor robustness problems of joint SoH-SoC estimation, a joint SoH-SoC estimation method based on BP neural network with variable learning rate and adaptive fading extended H∞ filter is proposed. Firstly, a novel SoH feature parameter based on time interval of unit charging voltage difference is proposed. Secondly, the traditional BP neural network is improved by using a novel BP neural network with variable learning rate to improve the error convergence speed and shorten the weights optimization search time. Finally, by designing a new type of adaptive fading factor to weight the error covariance matrix of traditional extended H infinity filter, an adaptive fading extended H infinity filter algorithm is established to reduce the influence of stale measurement on the estimation results and correspondingly improve the estimation accuracy and robustness of filter. The experimental results show that the SoH and SoC estimation errors of the proposed algorithm are smaller than 0. 35% and 0. 5% , respectively, demonstrating the high estimation accuracy and robustness.

    参考文献
    相似文献
    引证文献
引用本文

钱 伟,王亚丰,王 晨,郭向伟,赵大中.基于 BP 神经网络与 H∞ 滤波的锂电池SoH-SoC 联合估计研究[J].仪器仪表学报,2024,45(6):307-319

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-25
  • 出版日期:
文章二维码