使用异质集成学习和心电信号异构特征融合的睡眠呼吸暂停分类方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH701 TP391

基金项目:


Sleep apnea classification method utilizing heterogeneous ensemble learning and electrocardiogram heterogeneous feature fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    睡眠呼吸暂停(SA)会影响睡眠质量,增加心脑血管疾病风险,其准确分类有助于在 SA 早期阶段及时开展针对性治疗。 本文提出一种使用异质集成学习和异构特征融合的 SA 分类新方法。 首先从原始心电信号中提取小波时频谱,使用 SE-ResNet 作为初级分类器;然后提取 RR 间期序列和 R 峰值序列,使用 1D CNN-LSTM 作为初级分类器;再提取心率变异性特征,使用 SVM 作为初级分类器。 最后采用堆叠法作为异质集成学习的融合策略,再使用另一个 SVM 作为次级分类器实现 SA 分类。 在 Apnea-ECG 数据集上进行实验,所提出的 SA 分类方法的准确率为 89. 12% 。 实验结果表明,所提方法有效利用了各初级分类器 的多样性和异构特征的互补性,其性能优于传统的 SA 分类方法。

    Abstract:

    Sleep apnea ( SA) affects the quality of sleep and increases the risk of cerebrovascular and cardiovascular diseases. It is advantageous to implement the accurate classification for the timely treatment at the early stage of SA. In this paper, one novel SA classification method utilizing heterogeneous ensemble learning and heterogeneous feature fusion is proposed. Firstly, the SE-ResNet is used as primary classifier of the extracted wavelet time-frequency spectrum from raw electrocardiogram (ECG). Then the 1D CNN-LSTM is used as primary classifier of the extracted R-peak to R-peak interval(RRI) sequence and R-peak amplitude (RAMP) sequence. And the SVM is used as primary classifier of extracted heart rate variability features. Finally, the stacking method is adopted as fusion strategy for heterogeneous ensemble learning, and then another SVM is used as the secondary classifier to implement SA classification. The proposed SA classification method is evaluated on Apnea-ECG dataset, whose accuracy is 89. 12% . Experimental results show that the proposed method utilizes the diversity of primary classifiers and complementarity of heterogeneous features efficiently, which outperforms the conventional SA classification method.

    参考文献
    相似文献
    引证文献
引用本文

韩 亮,罗统军,蒲秀娟,刘 媛,梁国祥.使用异质集成学习和心电信号异构特征融合的睡眠呼吸暂停分类方法[J].仪器仪表学报,2024,45(6):320-327

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-25
  • 出版日期:
文章二维码