空间约束FCM与MRF结合的侧扫声呐图像分割算法
DOI:
CSTR:
作者:
作者单位:

1.河海大学物联网工程学院常州213022;2.常州市传感网与环境感知重点实验室常州213022

作者简介:

通讯作者:

中图分类号:

TP391.4TH766

基金项目:

国家自然科学基金(41306089)、江苏省自然科学基金(BK20130240)项目资助


Sidescan sonar image segmentation algorithm based on spaceconstrained FCM and MRF
Author:
Affiliation:

1. College of IOT Engineering, Hohai University, Changzhou 213022, China; 2. Changzhou Key Laboratory of Sensor Networks and Environment Sensing, Changzhou 213022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对侧扫声呐图像斑点噪声强、目标分割困难的问题,提出了一种基于空间约束的快速模糊C均值聚类(SCFFCM)与马尔可夫随机场(MRF)相结合的分割算法。为克服噪声干扰,该算法首先基于贝叶斯最大后验概率理论在非下采样Contourlet变换域去除声呐图像中的强斑点噪声;然后为加快分割速度,提出SCFFCM算法,该算法用于给出一个较好的初始分割;接着由初始分割计算MRF模型的约束场,再根据图像邻域内灰度波动情况自适应更新结合权值,进而求解得到FCM模糊场与MRF约束场的联合场,并基于最大概率准则得到分割结果;最后,采用形态学去除分割结果中的孤立噪点,并完成孔洞填充。对仿真及实际的侧扫声呐图像的分割实验结果表明,所提算法较FCM和现有的一些FCM改进算法有更强的抗噪能力、更高的分割精度以及更快的运算速度。

    Abstract:

    Aiming at the problems of strong speckle noise in sidescan sonar images and object segmentation difficulty, a segmentation algorithm based on spaceconstrained fast fuzzy Cmeans clustering (SCFFCM) and Markov random field (MRF) is proposed in this paper. Firstly, the strong speckle noise in sonar images is removed in nonsubsampled contourlet transform (NSCT) domain based on Bayesian maximum posteriori probability theory. Secondly, SCFFCM algorithm is proposed to accelerate the segmentation speed and give a good initial segmentation. Thirdly, the constrained field of MRF model is calculated from the initial segmentation, the combined weights of fuzzy clustering and Markov random field are adaptively updated according to the image gray fluctuations within the neighborhood; then the joint field of FCM fuzzy field and MRF constrained field is solved, and the segmentation result is obtained based on the maximum probability criterion. Finally, considering the noise points and ‘hole’ phenomenon in the segmentation result, a postprocessing method based on morphology is adopted to remove the isolated noise points and complete the ‘hole’ filling. Segmentation experiments on simulated and actual sidescan sonar images were conducted. Experiment results show that the proposed algorithm has stronger antinoise capability, higher segmentation precision and faster calculation speed compared with FCM and some other improved FCM algorithms.

    参考文献
    相似文献
    引证文献
引用本文

霍冠英,刘静,李庆武,周亮基.空间约束FCM与MRF结合的侧扫声呐图像分割算法[J].仪器仪表学报,2017,38(1):226-235

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-20
  • 出版日期:
文章二维码