基于梯度方向直方图的热核特征提取方法
DOI:
CSTR:
作者:
作者单位:

北京科技大学自动化学院北京100083

作者简介:

通讯作者:

中图分类号:

TP391.4TH164

基金项目:

国家自然科学基金(61375010,61005009)项目资助


Extraction method of histogram of oriented gradient based heat kernel signatures
Author:
Affiliation:

School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种适用于描述非刚性三维模型局部表面结构的特征提取方法,即基于梯度方向直方图的热核特征(HOGHKS)提取方法。该方法首先提取具有等距不变性的三维点热核信号,可以使后续提取的特征向量具有等距不变性和较好的稳定性;然后对热核信号的对数差分值进行梯度方向直方图统计,可以使构造出的特征向量对三维模型的尺度变化具有一定的不变性。该特征在一定程度上解决了HKS特征不具有尺度不变性、SIHKS特征虽然具有尺度不变性但是需要将热核信号转换到频域进行描述会丢失一部分有效描述信息的问题。实验结果表明,与HKS特征和SIHKS特征相比,HOGHKS特征具有更好的检索效果。

    Abstract:

    In this paper, a feature extraction method suitable for describing local surface structure of the nonrigid 3D model is proposed, which is called histogram of oriented gradient based heat kernel signature (HOGHKS) extraction method. The method firstly extracts the heat kernel signature of the 3D point with isometric invariance, which makes the following extracted feature vector have isometric invariant characteristic and good stability. Then, the logarithm difference of the heat kernel signature is computed and its histogram of oriented gradient is computed, which can make the constructed feature vector have certain scale invariance to the scale variation of 3D model. The proposed feature in a certain extent solves the problems that the HKS feature does not have scale invariance, and the SIHKS feature has scale invariance though, it requires transforming the heat kernel signature into frequency domain for description, which will lose part of the effective description information. Extensive experiment results show that the HOGHKS feature has better retrieval performance compared with the HKS feature and SIHKS feature.

    参考文献
    相似文献
    引证文献
引用本文

曾慧,李斯琦,汪慧娟,刘冀伟.基于梯度方向直方图的热核特征提取方法[J].仪器仪表学报,2017,38(4):844-852

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-19
  • 出版日期:
文章二维码