基于MI-LSSVM的水泥生料细度软测量建模
DOI:
CSTR:
作者:
作者单位:

燕山大学电气工程院秦皇岛066004

作者简介:

通讯作者:

中图分类号:

TP183TH7

基金项目:

国家自然科学基金(61403336)项目资助


Soft sensor modeling for cement fineness based on least squares support vector machine and mutual information
Author:
Affiliation:

Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水泥生料细度软测量模型难以建立的问题,考虑到输入变量选择易受时延的影响,提出一种基于互信息和最小二乘支持向量机(MILSSVM)的软测量建模方法。该方法采用互信息表征变量间的相关性,进而解决水泥生料细度软测量建模中的时延问题,并在此基础之上,提出双向选择算法获取输入变量,将得到的输入变量应用于最小二乘支持向量机中,建立水泥生料细度软测量模型,最后应用水泥厂的实际数据对基于互信息和最小二乘支持向量机的水泥生料细度软测量模型进行仿真。结果表明该方法预测精度高、泛化能力强。

    Abstract:

    To accurately establish the soft sensor model of cement fineness, the selection of input variables is easily influenced by time delay. Thus, this paper proposes a soft sensor modeling method based on mutual information and least square support vector machine (MILSSVM). In the proposed method, the correlation of variables is represented by mutual information, which can be used to determine the time delay of each auxiliary variable. Furthermore, the twoway selection algorithm is proposed to obtain input variables, and a soft sensor model of cement fineness is built based on least squares support vector machine with these selected input variables. Finally, the proposed model is trained with actual operational data of a cement plant. The experimental results show that the model can achieve high precision and generalization.

    参考文献
    相似文献
    引证文献
引用本文

赵彦涛,单泽宇,常跃进,陈宇,郝晓辰.基于MI-LSSVM的水泥生料细度软测量建模[J].仪器仪表学报,2017,38(2):487-496

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-20
  • 出版日期:
文章二维码