基于分布式传感网络的在线智能用电谐波源定位
DOI:
CSTR:
作者:
作者单位:

清华大学精密仪器系 精密测试技术及仪器国家重点实验室北京100084

作者简介:

通讯作者:

中图分类号:

TM935

基金项目:

国家自然科学基金(61272428)、教育部博士点基金(20120002110067)项目资助


Online distributed harmonic source identification in smart demand side sensing networks
Author:
Affiliation:

Department of Precision Instrument,State Key Laboratory of Precision Measurement Technology and Instrument,Tsinghua University,Beijing 100084,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    用电侧谐波源对用电电能质量的影响日益增大,在大规模智能用电网下谐波源辨识与定位问题对提高电能质量有重要作用。智能用电网络采用智能电表组成的分布式智能用电信息测量网络实现对大规模用电网络测量。谐波故障源定位可通过分布式网络化测量方法提高在线辨识精度。提出了基于相关信息树的分布式用电谐波源递归定位方法,提高了定位精度。对用电网络进行建模分析,在公共连接点的辨识采用独立分量分析方法提取故障源的信号,通过分布式测量节点的相关信息树确定多通道信号间的网络拓扑结构。搭建了面向智能用电的分布式测量网络平台,验证了提出的谐波源定位方法。实验结果表明提出的方法可实现全网络下的谐波源定位,并具有较好的实时性。

    Abstract:

    Harmonic injections on the demand side are a growing threaten to the power quality in the power utilization grid. Harmonic identification is important to improve power quality in large scale power utilization grid. The smart electrical information network can measure the electrical information in the network with distributed smart meters. This distributed measuring network can improve the harmonic identification accuracy. This paper proposed a distributed harmonic identification method using the ChowLiu information tree. The harmonic currents at the Point of Common coupling(PCC) are extracted by independent component analysis. The ChowLiu information tree offers the topological structure of the signals and recovers the magnitude and location of the harmonic sources. A practical testbed for networked measurement is built to verify the proposed harmonic source identification method. Experimental results show that the proposed method can identify the harmonic sources in a high accuracy under networked sensing environment with acceptable real-time performance.

    参考文献
    相似文献
    引证文献
引用本文

刘佑达,王雪,崔粟晋,刘晏池.基于分布式传感网络的在线智能用电谐波源定位[J].仪器仪表学报,2017,38(1):1-7

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-20
  • 出版日期:
文章二维码