基于S变换谱核密度估计的齿轮故障诊断
DOI:
CSTR:
作者:
作者单位:

1.浙江工业大学之江学院绍兴312030;2. 浙江大学 浙江省先进制造技术重点研究实验室杭州310027;3. 浙江工业大学 特种装备制造与先进加工技术教育部重点实验室杭州310014

作者简介:

通讯作者:

中图分类号:

TH165+.3TN911.7

基金项目:

国家自然科学基金(51275453,51505424)、浙江省自然科学基金(LQ17E050006,LY15E050019)项目资助


Gear fault diagnosis based on kernel density estimation of S transform spectrum
Author:
Affiliation:

1. Zhijiang College ,Zhejiang University of Technology, Shaoxing 312030, China; 2. Zhejiang Province Key Laboratory of Advanced Manufacturing Technology,Zhejiang University,Hangzhou 310027, China; 3. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of Ministry of Education,Zhejiang University of Technology, Hangzhou 310014, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对齿轮在故障损伤状态下的振动信号,提出一种基于S变换谱二维核密度估计的冲击特征提取方法,以实现齿轮的故障诊断。该方法首先对包含冲击特征的振动信号进行S变换;然后将S变换谱乘以一个系数后圆整,得到一个整数矩阵;最后以S变换谱的时间和频率构成一个二维随机变量,以整数矩阵中的元素值作为二维随机变量各个采样样本的个数,对二维随机变量进行核密度估计,并最终得到一个二维核密度函数。该核密度函数相当于由S变换谱经过一次平滑去噪的过程获得,其中的噪声得到了有效的抑制,而冲击特征则得到了加强与突显。仿真振动信号和齿轮箱故障振动信号的分析结果表明,该方法能够有效地强化并提取出振动信号中周期性的冲击特征,从而实现齿轮箱相关故障的诊断。

    Abstract:

    An impact feature extraction method, based on twodimensional kernel density estimation for S transform spectrum, is proposed to analyze the vibration signal for gear fault diagnosis. In this approach, S transform is used to process the vibration signal, firstly. Secondly, the obtained Stransform spectrum is multiplied by a factor and then rounded to obtain an integer matrix. Finally, the time and the frequency of the Stransform spectrum are used to construct a twodimensional random variable, and the elements in the integer matrix are taken as the corresponding sample number of the twodimensional random variable. The kernel density of the twodimensional random variable is consequently estimated and a twodimensional kernel density function is obtained. Specifically, the kernel density function is acquired by the smoothing and denoising procedure of the S transform spectrum, in which the noise is effectively suppressed while the impulse signature is enhanced. By means of the processing of the simulated vibration signal and the gearbox fault vibration signals, results show that the proposed method can extract the periodic impact characteristics from the vibration signal effectively, which means the proposed method can be used for gearbox fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

郭远晶,魏燕定,金晓航,杨友东.基于S变换谱核密度估计的齿轮故障诊断[J].仪器仪表学报,2017,38(6):1432-1439

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-07-21
  • 出版日期:
文章二维码