压缩感知域智能天然气管道泄漏孔径识别
DOI:
CSTR:
作者:
作者单位:

1. 燕山大学信息科学与工程学院秦皇岛066004;2. 燕山大学 河北省测试计量技术及仪器重点实验室秦皇岛066004

作者简介:

通讯作者:

中图分类号:

TH865TE88

基金项目:

国家自然科学基金(51204145)、河北省自然科学基金(E2016203223,E2013203300)项目资助


Pipeline leak aperture identification based on compressed sensing
Author:
Affiliation:

1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; 2. Key Laboratory of Measurement Technology and Instrumentation of HeBei Province,Yanshan University, Qinhuangdao 066004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    天然气管道泄漏监测正在进入大数据时代,针对传统方法存在的采集数据冗余、特征提取及识别受主观因素影响较大等问题,结合压缩感知与深度学习理论,提出一种在变换域进行泄漏信号的压缩采集、在压缩感知域进行自适应特征提取及识别的智能天然气管道泄漏孔径识别方法。通过随机高斯矩阵获取压缩采集数据,并通过深度学习挖掘测量信号中隐藏的泄漏孔径信息,经稀疏滤波实现特征的自动筛选,最后研究了softmax回归实现孔径的高精度分类识别。实验结果表明,该方法实现了监测数据的压缩,对压缩感知域采集信号的识别性能明显优于传统方法。

    Abstract:

    Natural gas pipeline leak monitoring is entering the age of big data. Aiming at the problems of traditional methods, such as redundant data, subjective feature extraction and identification, an intelligent pipeline leak aperture identification method is proposed combined compressed sensing (CS) and deep learning theory, which can achieve compressed sampling, adaptive feature extraction and recognition. The random Gaussian matrix is used to acquire the compressed acquisition data, and the aperture information contained in measured samples in CS domain is analyzed by deep learning. The sparse filtering is applied to realize the automatic feature selection. Finally, the high precision classification and recognition of the aperture is obtained by softmax regression. Experimental results show that this method realizes the compression of the monitoring data, and the identification performance for data of compressed sensing domain is better than traditional methods.

    参考文献
    相似文献
    引证文献
引用本文

孙洁娣,乔艳雷,温江涛.压缩感知域智能天然气管道泄漏孔径识别[J].仪器仪表学报,2017,38(12):3071-3078

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-17
  • 出版日期:
文章二维码