Abstract:To relieve the increased damage of inverters and guarantee reliability and safety of PMSMdriven rail vehicles suffering demagnetization fault, this paper presents an advanced lifeextending control strategy through hybrid model. The proposed strategy conducts online remaining flux estimation and offline control law reconfiguration, to decrease the input power of PMSM with demagnetization. It regards PMSMsInverter as a whole electromechanical system for closed loop control to autonomously extend the operation life of inverters. The feasibility and benefit of the life extending control strategy is validated through a simulated experiment of Syntegra PMSM rail vehicle. The simulation results show that accurate monitoring and damage prognosis of demagnetization can be , and the life of inverters is extended effectively without influencing operation performance.