基于四元数时空卷积神经网络的人体行为识别
DOI:
CSTR:
作者:
作者单位:

东北电力大学信息工程学院吉林132012

作者简介:

通讯作者:

中图分类号:

TP391.4TH164

基金项目:

国家自然科学基金青年项目(61602108)、吉林市科技局项目(20166016)资助


Human body action recognition based on quaternion spatial temporal convolutional neural network
Author:
Affiliation:

School of Information Engineering, Northeast Electric Power University, Jilin 132012, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统卷积神经网络(CNN)只适用于灰度图像或彩色图像分通道的特征提取,忽视了通道间的空间依赖性,破坏了真实环境的颜色特征,从而影响人体行为识别的准确率。为了解决上述问题,提出一种基于四元数时空卷积神经网络(QSTCNN)的人体行为识别方法。首先,采用码本算法预处理样本集所有图像,提取图像中人体运动的关键区域;然后将彩色图像的四元数矩阵形式作为网络的输入,并将CNN的空间卷积层扩展为四元数空间卷积层,将彩色图像的红、绿、蓝通道看作一个整体进行动作空间特征的提取,并在时间卷积层提取相邻帧的动态信息;最后,比较QSTCNN、灰度单通道CNN(GrayCNN)和RGB 3通道CNN(3ChannelCNN)3种方法的识别率。实验结果表明,所提方法优于其他流行方法,在Weizmann 和 UCF sports 数据集分别取得了85.34% 和80.2%的识别率。

    Abstract:

    Traditional CNN models are suitable for the feature extraction of gray image sequences or the color image separate channels, which ignores the interdependency among the channels and destroys the color features of real world objects, thereby affects the accuracy rate of human body action recognition. In order to solve this problem, a human body action recognition method is proposed based on quaternion spatialtemporal convolutional neural network (QSTCNN). Firstly, codebook algorithm is adopted to process all the images in the sample set and extract the key regions of human body motion in the images. Then,the quaternion matrix expression of the color images is taken as the input of the QSTCNN. The spatial convolutional layer of CNN is expended as a quaternion spatial convolutional layer. The values of the red, green, and blue channels of the color images are considered simultaneously as a whole in a spatial convolutional layer to conduct the extraction of the action spatial features, and avoid the loss of spatial relationships. The dynamical information of adjacent frames is extracted in a temporal convolutional layer. Finally, experiment was conducted, in which QSTCNN, gray single channel CNN (GrayCNN) and RGB three channel CNN (3 ChannelCNN) were compared. The experiment result demonstrates that the QSTCNN boosts the performance of action recognition, the proposed method is superior to other popular methods and achieves the recognition rates of 85.34% and 80.2% in the Weizmann and UCF sports datasets, respectively.

    参考文献
    相似文献
    引证文献
引用本文

孟勃,刘雪君,王晓霖.基于四元数时空卷积神经网络的人体行为识别[J].仪器仪表学报,2017,38(11):2643-2650

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-12-23
  • 出版日期:
文章二维码