基于神经网络预测控制的节能电梯能量管理
DOI:
CSTR:
作者:
作者单位:

1.厦门理工学院 福建省高电压技术重点实验室厦门361024;2.浙江大学电气工程学院杭州310027

作者简介:

通讯作者:

中图分类号:

TH70TM921

基金项目:

国家自然科学基金(51407151)、福建省自然科学基金(2015J05113)项目资助


Energy management of energysaving elevator based on neural network predictive control
Author:
Affiliation:

1. Highvoltage Key Laboratory of Fujian Province, Xiamen University of Technology ,Xiamen 361024, China; 2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着电梯的日益增多,电梯节能问题引起越来越多的关注。针对节能型电梯中超级电容的储能管理问题,提出一种基于神经网络预测控制策略的新方法来动态预测电梯运行中所需的能量。首先根据电梯当前停层、目的停层以及载荷信息,建立反向传播神经网络(BPNN)模型并通过样本训练确定各神经元的权值和偏置值,然后利用该模型在线预测电梯每个行程吸收或回馈的能量,据此调节超级电容的平衡电压实现提前储能/泄能,补偿电梯运行过程中所需的尖峰功率。此外,根据电梯载荷和行程信息动态调整超级电容的平衡电压,可以充分利用超级电容的能量存储空间,在某些行程下除了补偿尖峰功率,还能够补偿一部分额定功率,优化网侧整流器的功率容量。最后通过MATLAB/Simulink搭建的仿真平台和实验样机验证了本方法的可行性。

    Abstract:

    The energysaving issue attracts more and more attentions recently with the increasing installations of the elevators in the buildings. And super capacitors (SUPCAPs) are the preferred energyconserving devices equipped in the elevators to store the energy regenerated by the tracking motor. A new back propagation neural network based (BPNNbased) predictive control strategy is employed to predict the energy required by the elevator at every trip. According to the information of the current stop floor, the destination floor, and the weight of the passengers, the BPNN model is setup and trained by the samples. Then the trained BPNN is applied to predict the energy required by the elevator at the beginning of each trip. In this way, the energy provided by the SUPCAPs is determined and the balance voltage (BV) can be regulated to fully compensate the peak power. Moreover, the power capacity of the gridside pulsewidth modulation (PWM) rectifier can be reduced because the SUPCAPs provide as much energy as possible in every trip. Not only the peak power which emerges when the elevator moves in heavy load or full load eliminated, but also the rated power can be partly counteracted by the SUPCAPs. Finally, a simulation based on MATLAB/Simulink as well as the corresponding experimental prototype is setup to verify the proposed method, and results from the simulation and experiments prove the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

张达敏,林辉品,林智勇,徐敏,吕征宇.基于神经网络预测控制的节能电梯能量管理[J].仪器仪表学报,2017,38(12):3137-3142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-17
  • 出版日期:
文章二维码