基于应力波分析的状态监控与故障预测研究
DOI:
CSTR:
作者:
作者单位:

1.重庆大学计算机学院重庆400044; 2.重庆川仪自动化股份有限公司重庆401121

作者简介:

通讯作者:

中图分类号:

TH7

基金项目:

国家工信部智能制造专项(2015 No.82)项目资助


Condition monitoring and fault prediction based on stress wave analysis
Author:
Affiliation:

1. College of Computer Science, Chongqing University, Chongqing 400044, China; 2. Chongqing Chuanyi Automation Co., Ltd., Chongqing 401121, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着先进的仪器测量与分析、物联网、云计算、数据挖掘、人工智能等科学技术的发展,设备状态监控和故障预测技术近年来在工业设备健康管理中起到越来越重要的作用。研究了一种基于应力波分析的状态监测与故障预测技术,通过应力波传感器对设备运动部件间的摩擦、机械冲击和动态荷载的电子信号进行检测和处理,采用专为应力波分析而开发的时域和频域特征提取软件和基于神经网络的数据融合技术,对设备状态进行定量分析,对设备故障进行准确预测,并提供设备健康诊断分析报告。运行试验表明,与振动分析等传统的状态监测方法相比,本系统能更好地实时监控设备运行情况,更早地预测故障,保证了生产安全性,降低了设备检维修成本,提高了生产效率。

    Abstract:

    The equipment condition monitoring and fault prediction technology plays an increasingly important role in industrial equipment health management with the development of science and technology on instrument measurement and analysis, Internet of things, cloud computing, data mining, artificial intelligence. This paper studies a condition monitoring and fault prediction technology based on stress wave analysis. The electronic signal of friction, mechanical shock and dynamic load on equipment moving parts are detected and processed by stress wave sensor. The stress wave analysis is fulfilled by using the time domain and frequency domain feature extraction software and sensor data fusion is conducted based on neural network. The equipment states are quantitatively analyzed and the equipment fault is accurately predicted, so as to provide the equipment health diagnosis reports. The test shows that, compared with the traditional vibration analysis, the proposed system can monitor the equipment operation condition better in real time, predict the fault earlier. The production safety can be guaranteed, the equipment maintenance cost can be reduced, and the production efficiency can be improved.

    参考文献
    相似文献
    引证文献
引用本文

吴天舒,陈蜀宇,吴朋.基于应力波分析的状态监控与故障预测研究[J].仪器仪表学报,2017,38(12):3061-3070

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-17
  • 出版日期:
文章二维码