多模型融合和重新检测的高精度鲁棒目标跟踪
DOI:
CSTR:
作者:
作者单位:

1湖南大学 汽车车身先进设计制造国家重点实验室长沙410082; 2福建工程学院 福建省汽车电子与电驱动重点实验室福州350119;

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(重大项目)51621004


Highaccuracy and robust object tracking based on multimodel fusion and redetection
Author:
Affiliation:

1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China; 2. Fujian Key Laboratory of Automotive Electronics and Electric Drive, Fujian University of Technology, Fuzhou 350118, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目标跟踪在遮挡和光照变化等复杂场景下容易跟踪失败的问题,提出一种高精度鲁棒的目标跟踪算法。首先,将基于边缘信息的目标模型、基于梯度直方图(HOG)特征的滤波器模型和基于颜色直方图的颜色模型融合为更准确和鲁棒性更强的跟踪模型;然后,提出基于特征分数的双重跟踪可靠性判断依据,检测跟踪结果的可靠性;最后,在跟踪结果可靠性较低时,采用粒子滤波、稀疏表示以及距离约束定位进行重新检测,以实现持续稳定的跟踪。算法在OTB2015数据集上的平均重叠精度为782%,平均中心位置误差为231 pixel,平均跟踪速率为308 f/s,准确度和鲁棒性优于其他算法。在移动机器人和车辆跟踪平台上进行算法验证,平均重叠精度分别为975% 和972%,平均中心位置误差分别为68和126 pixel,平均跟踪速率分别为291和284 f/s,能有效跟踪上述复杂场景的目标,且满足实时要求。

    Abstract:

    Aiming at the problem that object tracking is subject to failure in complex scenes such as occlusion and illumination variation, a highaccuracy and robust object tracking algorithm is proposed. Firstly, the target model based on edge information, the filter model based on HOG feature and the color model based on color histogram are merged into a more accurate and strong robust tracking model. Then, the double tracking reliability judgment criterion based on the score of the feature is proposed to detect the reliability of the tracking result. Finally, when the reliability of the tracking result is low, particle filtering, sparse representation and distance constraint positioning are used for redetection to achieve continuous and stable tracking. On the OTB2015 dataset, the average overlap precision of the proposed algorithm is 782%, the average center location error is 231 pixel and the average tracking rate is 308 f/s, which indicates that the accuracy and robustness are better than those of other algorithms. The algorithm was verified on mobile robot and vehicle tracking platform, the average overlap precisions are 975% and 972%, the average center location errors are 68 pixel and 126 pixel, respectively, and the average tracking rates are 291 and 284 f/s, respectively. The proposed algorithm can effectively track the targets in above mentioned complex scenes and meet the realtime requirements.

    参考文献
    相似文献
    引证文献
引用本文

白中浩,朱磊,李智强.多模型融合和重新检测的高精度鲁棒目标跟踪[J].仪器仪表学报,2019,40(9):132-141

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-20
  • 出版日期:
文章二维码