基于生成对抗网络和自动编码器的机械系统异常检测
DOI:
CSTR:
作者:
作者单位:

苏州大学轨道交通学院苏州215131

作者简介:

通讯作者:

中图分类号:

TH13TH17TP274TP277

基金项目:

国家自然科学基金(51805342,51875376,51875375)、江苏省自然科学基金(BK20180842)、中国博士后科学基金(2018M640514)、江苏省博士后科研资助计划(2018K006B)资助项目


Anomaly detection of mechanical systems based on generative adversarial network and autoencoder
Author:
Affiliation:

School of Rail Transportation, Soochow University, Suzhou 215131, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有的机械系统智能诊断模型需要不同健康状态下大量的历史数据和相对应的标签来完成模型训练,但有些机械系统难以采集到异常样本。在无异常样本训练情况下,本文提出一种新的机械系统异常检测方法。新方法结合生成对抗网络和自动编码器,构建了一种编码解码再编码的网络模型。所提模型首先通过早期采集的正常样本进行训练,然后用于对未知状态的实时监测样本进行测试,输出两次编码得到的潜在特征的差异值,最后通过观察差异值的变化对系统进行监测。3组实验分析结果验证了方法的有效性。与传统方法相比,新方法检测出异常的时间更早,所得差异值指标在异常发生时幅度增加得更大,且能更稳定表征故障演化过程。

    Abstract:

    Current intelligent diagnostic models of mechanical systems require massive historical data under different health states and corresponding labels to complete model training. However, the abnormal samples are hard to be acquired in some mechanical systems. In the condition where abnormal samples are absent for training, this paper proposes a novel anomaly detection method of mechanical systems. The new method combines generative adversarial network (GAN) and autoencoder (AE) to establish an encodingdecodingencoding network model. The proposed model is firstly trained by the normal samples of the mechanical system acquired in the early stage, then the model is used to test the online collected real time monitoring samples with unknown health state and outputs the dissimilarity between the latent features obtained in two encoding. Finally, the system is monitored by inspecting the variation of the output dissimilarity. Three groups of experiment analysis results are used to verify the effectiveness of the proposed method. Compared with traditional methods, the proposed method can detect the anomaly earlier, the dissimilarity index has a larger increment when anomaly occurs, and this method can more stably characterize the fault evolutionary process.

    参考文献
    相似文献
    引证文献
引用本文

戴俊,王俊,朱忠奎,沈长青,黄伟国.基于生成对抗网络和自动编码器的机械系统异常检测[J].仪器仪表学报,2019,40(9):16-26

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-20
  • 出版日期:
文章二维码