基于像元相互关系的FCM聚类分割算法
DOI:
CSTR:
作者:
作者单位:

湘潭大学机械工程学院湘潭411106

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),中国博士后科学基金


FCM clustering segmentation algorithm based on pixel mutual relationship
Author:
Affiliation:

School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统模糊C均值(FCM)算法在图像分割时未考虑像元间的相互关系,且未事先给出初始聚类中心的问题,提出了一种考虑像元间相互关系的FCM聚类分割算法。该算法基于数据场原理,首先利用像元间的相互关系,通过计算各像素点的势值,形成图像数据场,然后利用图像数据场势心,确定FCM算法的初始聚类中心,最后在图像数据场的基础上,利用FCM算法实现对目标图像的聚类分割。利用人工合成图像和工件表面缺陷图像对算法的有效性进行验证,实验结果表明,该算法具有较好的分割效果,且对于条痕、脱碳、孔洞3种缺陷的不同噪声图像分割的正确率均在93%以上,同时具有较高的平均结构相似性。

    Abstract:

    Aiming at the problems that traditional fuzzy Cmeans (FCM) algorithm does not consider the mutual relationship among pixels and requires to obtain the initial cluster center when dealing with image segmentation, the paper proposes a FCM clustering segmentation algorithm considering the relationship among pixels. Firstly, the algorithm adopts the principle of data field, uses the mutual relationship among the pixels to calculate the potential values of the pixels and form the image data field. Then, the initial cluster center of the FCM algorithm is determined with the image data field potential center. Finally, based on the image data field, the FCM algorithm is used to realize the clustering segmentation of the target image. In order to verify the effectiveness of the algorithm, the artificial synthetic image and the workpiece surface defect image were used for experiments. The experiment results show that the algorithm has better segmentation effect. Meanwhile, for different noisy images with streaks, decarburization and hole defects, the segmentation accuracies are above 93%, and has a high mean structural similarity.

    参考文献
    相似文献
    引证文献
引用本文

周友行,刘汉江,赵晗妘,赵玉.基于像元相互关系的FCM聚类分割算法[J].仪器仪表学报,2019,40(9):124-131

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-20
  • 出版日期:
文章二维码