基于贝塔分布与滤波降噪算法的滚动轴承故障预警方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133

基金项目:

国家自然科学基金(12172231)、辽宁省兴辽英才计划项目(XLYC2203042)、沈阳市中青年科技创新人才支持计划(RC220439)项目资助


Fault early warning method of rolling bearing based on beta distribution and filter algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机械系统中轴承故障信号具有非线性、非平稳且伴随较强背景噪声的特点,造成实现轴承故障早期预警困难的问 题,提出了一种基于贝塔分布与滤波降噪算法结合的滚动轴承智能预警方法。 首先,该方法采用基于贝塔分布的阈值确定方法 计算出监测数据的预警阈值区间。 然后,采用滑动平均滤波算法对采集的数据进行降噪处理以消除数据监测噪声,同时,对比 分析了滑动平均滤波、H-P 滤波和形态滤波的降噪效果。 最后,将计算出的预警阈值区间与滤波后的数据进行对比,根据监测 数据是否超出阈值区间做出预警。 本文采用 XJTU-SY 数据集和轴承实验数据验证算法准确性。 结果表明,本文所提出方法能 够准确地计算出平稳运行中的滚动轴承的预警阈值区间,并有效地对发生早期故障的轴承做出预警,其中最快的预警反应时间 为 56. 76 s,最慢的预警反应时间为 778. 20 s。 同时对比分析结果表明,在对原始数据进行滤波降噪处理时,滑动平均滤波降噪 效果优于 H-P 滤波和形态学滤波。

    Abstract:

    The fault signals of rolling bearings in mechanical systems are usually nonlinear, non-stationary, and accompanied by strong background noise, which makes it difficult to realize early warning of bearing fault. An intelligent early-warning method for rolling bearings based on beta distribution and filter denoising algorithm is proposed in this article. First, the early warning threshold value interval of the monitoring data is calculated by the threshold determination method based on the beta distribution. Then, the average filtering algorithm is used to reduce the noise of the collected data to eliminate the data monitoring noise. Meanwhile, the noise reduction effects of moving average filtering, H-P filtering, and morphological filtering are compared and analyzed. Finally, the calculated warning threshold interval is compared with the filtered data, and the early warning is made according to whether the monitoring data exceed the threshold interval. The XJTU-SY dataset and bearing experimental data are used to evaluate the accuracy of the algorithm. The results show that the proposed method can accurately calculate the early warning threshold interval of rolling bearings in smooth operation and effectively warn the bearings of early failures. The fastest early warning response time is 56. 76 s and the slowest early warning response time is 778. 20 s. Furthermore, the comparative analysis results show that the effect of moving average filtering is better than those of H-P filtering and morphological filtering when filtering the original data.

    参考文献
    相似文献
    引证文献
引用本文

田 晶,高晓岚,陈仁桢,张凤玲,王 志.基于贝塔分布与滤波降噪算法的滚动轴承故障预警方法[J].仪器仪表学报,2023,44(12):44-54

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-27
  • 出版日期:
文章二维码