基于多阶段关联的多目标跟踪算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH865

基金项目:

江苏省前沿引领技术基础研究专项(BK20192004C)资助


Multi-object tracking algorithm based on multi-stage association
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有多目标跟踪算法关联过程中,外观和几何信息利用不充分,同时跟踪对象的邻域间信息交互不足的问题,提出 了一种基于多阶段关联的多目标跟踪算法,根据目标之间的不同关联状态,将几何信息和外观信息合理应用于不同关联阶段。 算法提出了基于正则化距离交并比(DIoU-Mea)的匹配模块,仅利用几何信息快速将强关联目标匹配。 同时基于稀疏图网络 (GNN)的关联模块对跟踪对象的邻域建模,促进对象之间的信息交换并提高跟踪精度。 基于通道注意力融合特征模型和形状 交并比的双校验模块(Double-Revise)进一步细化跟踪结果。 所提算法利用不同阶段匹配算法的互补优势,在各阶段合理利用 外观和几何信息,过滤掉错误的匹配并识别正确的目标对应关系,在 MOT17 数据集上进行了验证与测试,其高阶跟踪精度 (HOTA)在测试集中达到了 64. 8% ,表明算法具有较好的性能,在密集场景下具有较好的鲁棒性。

    Abstract:

    Existing multi-object tracking algorithms make insufficient use of appearance and geometric information, and the information exchange among adjacent regions of the tracked object is limited. To solve this problem, a multi-object tracking algorithm based on multi-stage association is proposed, which applies geometric and appearance information to different association stages according to the different association states among objects. Firstly, a fast matching module based on the regularized distance intersection and union ratio (DIoU-Mea) is employed to efficiently handle the matching task of strongly correlated objects only using geometric information. Secondly, an association module based on the sparse graph network (GNN) is incorporated to model the neighborhood of the tracked object, facilitate information exchange among objects, and improve tracking accuracy. Finally, a double verify module (Double-Revise) is introduced, which utilizes the channel attention fusion feature model and the shape intersection and union ratio to further refine the tracking results. By utilizing the complementary advantages of different stage matching algorithms and making reasonable use of appearance and geometric information in each stage, the proposed algorithm effectively filters out incorrect matches and accurately identifies the correct object correspondence. The proposed algorithm is evaluated and tested on the MOT17 dataset. Its high-order tracking accuracy (HOTA) reaches 64. 8% on the test set. Results show its good performance and robustness in dense scenarios.

    参考文献
    相似文献
    引证文献
引用本文

霍 旭,盖绍彦,洪 濡,周伟典,达飞鹏.基于多阶段关联的多目标跟踪算法[J].仪器仪表学报,2023,44(11):205-214

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-29
  • 出版日期:
文章二维码