ALC-PFL: 基于个性化联邦学习的轴承寿命预测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17 TN911. 7

基金项目:

国家自然科学基金(52275130)项目资助


ALC-PFL: Bearing remaining useful life prediction method based on personalized federated learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有数据驱动下的轴承寿命预测方法往往使用特定工况的数据训练相应工况的模型,忽略了其他工况数据所蕴含的有益 退化特征,导致模型预测精度受限。 为了充分挖掘和利用不同工况下的轴承退化特征,本文提出基于个性化联邦学习的轴承寿命 预测方法(ALC-PFL)。 在该方法中,不同工况轴承的监测数据被存储于多个客户端,一个中心服务器与多个客户端协同工作,以 模型传输、融合和本地更新的方式,为客户端建立个性化预测模型。 提出自适应本地融合算法,将中心服务器聚合的全局模型与 客户端本地模型有效融合,保留有助于客户端初始化模型的退化特征,以提升预测性能。 用两个轴承数据集对所提方法进行验 证,结果表明其能为不同工况的轴承搭建高性能寿命预测模型,与本地训练方法相比,该方法所得均方根误差降低了至少 13%。 关键词: 联邦学习;轴承;剩余寿命预测;卷积神经网络

    Abstract:

    Existing data-driven methods for predicting the remaining useful life of bearings often rely on data from a specific operating condition to train the corresponding prediction model. The valuable degradation features present in data from other conditions are disregarded. To effectively capture and utilize degradation features across diverse operating conditions, this article proposes a personalized federated learning-based method for bearing remaining useful life prediction. In this method, monitoring data from bearings under different conditions are distributed among multiple clients, while a central server collaborates with these clients to develop personalized prediction models by model transfer, combination, and local updates. To integrate the global model aggregated by the central server with the local model, an adaptive local combination algorithm is introduced, which preserves useful degradation features that aid in initializing the client′ s model and enhancing prediction performance. The proposed method is evaluated by using two datasets of bearings. The results show its ability to construct high-performance prediction models for bearings operating under different operating conditions. In comparison to local training method, this method manifests a minimum decrease of 13% in root mean square error.

    参考文献
    相似文献
    引证文献
引用本文

陈 曦,王 辉,陆思良,严如强. ALC-PFL: 基于个性化联邦学习的轴承寿命预测方法[J].仪器仪表学报,2023,44(12):69-78

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-27
  • 出版日期:
文章二维码