基于视觉修正的激光雷达体积测量方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP29 TH702

基金项目:

国家自然科学基金(62101184)、湖南省科技创新领军人才(2023RC1039)、湖南省自然科学基金重大项目(2021JC0004)、广东省基础与应用基础研究基金海上风电联合基金(2022A1515240050)、湖南省重点研发计划(2022GK2012)项目资助


Volumetric measurement of Lidar based on visual correction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对激光雷达点云数据稀疏、扰动、存在噪声和其他方法难以迁移,实时性差等难题,面向“L”型小尺寸目标研究了一 种基于视觉修正的激光雷达体积测量方法。 该方法首先通过联合标定和时间戳最近邻匹配实现相机与激光雷达数据的对齐; 然后经过目标检测算法获取图像中目标的信息,与此同时对点云数据执行地面分割得到地面点云与非地面点云,利用视觉投影 和点云聚类实现目标点云的分割,使用 KDtree 找到目标点云附近的地面点云;最后,设计了一种三维框的拟合算法初步完成点 云目标三维框的粗拟合,并建立视觉修正模型对于目标三维框进行细修正,从而实现目标体积的计算。 实验结果表明,对于武 器箱道具、医疗箱和油桶等“ L” 型物体,提出的算法在一定范围内,体积测量的平均相对误差小于 4. 44% 、最大误差小于 6. 12% 、最大重复性小于 5. 61% ,并且基于视觉的修正模型大幅提高了算法的精度和稳定性,在嵌入式平台的处理 1 帧用时 55 ms,能够实现实时高精度的体积测量,具有良好的工程应用前景。

    Abstract:

    To address challenges faced by most volume measurement methods, such as difficulties in transferring, poor real-time performance, and sparse, noisy, and perturbed Lidar point cloud data, this article presents a vision-based correction method for Lidar volume measurement for small ‘L’-shaped objects. The proposed method first aligns camera and Lidar data through joint calibration and time-stamped nearest-neighbor matching. Subsequently, it leverages target detection algorithms to extract information from images while simultaneously performing ground segmentation on point cloud data to distinguish ground and non-ground points. By employing visual projection and point cloud clustering, the method segments target point clouds and utilizes KDtree to identify ground points in proximity to the target point cloud. Finally, a 3D box fitting algorithm is proposed to provide initial rough estimation of the point cloud target′s 3D box. A visual correction model is established to refine the target′s 3D box, and enable accurate volume calculation. Experimental results show that for ‘L’-shaped objects like weapon crates, medical boxes, and barrels, the proposed algorithm achieves promising results within a certain range. The average relative error in volume measurement is less than 4. 44% , with a maximum error below 6. 12% and a maximum repeatability error of 5. 61% . In addition, the integration of the visual correction model significantly enhances the algorithm′ s accuracy and stability. The processing of frame on an embedded platform takes 55 ms, demonstrating the capability to achieve realtime, high-precision volume measurement. This method holds great promise for practical engineering applications.

    参考文献
    相似文献
    引证文献
引用本文

郭隆强,何赟泽,杜 旭,郭昱良,付玉轩.基于视觉修正的激光雷达体积测量方法[J].仪器仪表学报,2023,44(10):48-59

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-25
  • 出版日期:
文章二维码