数据机理驱动的机床主轴热精度建模方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH161 TG659

基金项目:

安徽省重点研究与开发计划项目(2022f04020005)、安徽省高等学校科研研究重点项目(2022AH050313)资助


Research on the thermal accuracy modeling method driven by data mechanism for machine tool spindle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    主轴热精度问题是造成精密数控机床精度下降的主要原因,传统数据驱动的热精度建模方法强调建模算法的优化,忽 略了热精度特性分析,导致鲁棒性低、解释性差和模型结构复杂等问题。 对此,从数据机理的角度出发分析主轴热精度特性,针 对性的提出热精度建模方法。 热精度建模前需要选择温度敏感点(TSPs),利用 LASSO 算法实现 TSPs 自适应选择;基于分位数 回归分析证明 TSPs 存在双重变动性,利用复合分位数回归算法提高建模精度;工况条件变动易造成模型泛化能力下降,利用 L2 正则化算法提高模型稳健性。 最终提出基于复合分位数回归结合弹性网络正则化的主轴热精度建模方法。 实验表明,利用 所提建模方法补偿后机床热误差波动在±2 μm 以内,相比补偿前精度提升 93. 3% ,所提建模方法具有预测精度和稳健性高、自 适应性强和解释性好的优势。

    Abstract:

    The thermal accuracy of the spindle is the main reason for the decline of precision CNC machine tools. The traditional datadriven thermal accuracy modeling method emphasizes the optimization of modeling algorithms and ignores the analysis of thermal accuracy characteristics, resulting in low robustness, poor interpretation, and complex model structure. In this regard, the thermal accuracy characteristics of the spindle are analyzed from the perspective of data mechanism, and a thermal accuracy modeling method is proposed. Temperature-sensitive points (TSPs) need to be selected before thermal accuracy modeling, and the LASSO algorithm is used to realize the adaptive TSPs selection. Based on quantile regression analysis, it is proved that the TSPs have double variability, and the compound quantile regression algorithm is used to improve modeling accuracy. The variable operating conditions tend to reduce the generalization ability of the model. The L2 regularization algorithm is used to improve the robustness of the model. Therefore, the thermal precision modeling method of spindles based on composite quantile regression and elastic network regularization is proposed. The experiments show that the thermal error of the machine tool after compensation using the proposed modeling method fluctuates within ±2 μm, an increase of 93. 3% compared to before compensation. The proposed modeling method has advantages in prediction accuracy, robustness, adaptability, and interpretation.

    参考文献
    相似文献
    引证文献
引用本文

魏新园,钱自强,吴秋源,钱牧云,周京欢.数据机理驱动的机床主轴热精度建模方法研究[J].仪器仪表学报,2023,44(12):111-119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-27
  • 出版日期:
文章二维码