基于 LeNet5like 的迁移学习风电机组叶片覆冰故障诊断研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17 TM315

基金项目:

中央高校基本科研业务费专项资金(2023MS029)资助


Research on fault diagnosis of wind turbine icing characteristics based on LeNet5like transfer learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对海上风电场和高海拔地区风机机组的叶片覆冰故障模型精度低、建模速度慢等问题,提出一种基于 LeNet5like 的 迁移学习风电机组叶片覆冰故障诊断方法。 首先,整合监控和数据采集系统的记录数据与风机覆冰情况进行预处理,建立训练 数据集;其次,基于改进后的 LeNet5like 网络构建覆冰故障诊断模型,提取数据集中多变量间的相关性特征信息;然后,经网络 参数微调迁移学习对模型进行训练,实现对其他风机覆冰故障诊断模型的快速建立;最后,经实验验证,该模型覆冰故障诊断准 确率为 98. 90% ,较无迁移模块网络训练时间缩短 28 s,提升约 15. 91% ,验证了基于 LeNet5like 的迁移学习风电机组叶片覆冰 故障诊断方法的精确性和快速性。

    Abstract:

    A fault diagnosis of wind turbine icing characteristics based on LeNet5like transfer learning method is proposed, to address the problems of low accuracy and slow modelling speed of icing characteristics fault models, which wind turbine units are in offshore wind farms and high altitude areas. Firstly, the recorded data from the SCADA system and the wind turbine icing situation are pre-processed to build a training dataset; secondly, the icing fault diagnosis model is constructed based on the improved LeNet5like network to extract the correlation feature information between multiple variables in the dataset; then, the model is trained by the transfer learning finetuning to achieve the rapid establishment of ice-cover fault diagnosis models for other wind turbines; finally, the model is experimentally validated to have an icing fault diagnosis accuracy of 98. 90% , a 28 s reduction in training time and an improvement of about 15. 91% over the transfer module-free network, verifying the accuracy and speed of the LeNet5like based transfer learning wind turbine blade icecover fault diagnosis method.

    参考文献
    相似文献
    引证文献
引用本文

吕 游,封 烁,郑 茜,邓 丹,刘吉臻.基于 LeNet5like 的迁移学习风电机组叶片覆冰故障诊断研究[J].仪器仪表学报,2024,45(3):128-143

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-31
  • 出版日期:
文章二维码