基于长时间尺度特性建模优化的飞行器遥测数据集合异常检测方法
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨工业大学电子与信息工程学院 哈尔滨150080; 2.石家庄海山实业发展总公司石家庄050200; 3. 航空工业西安飞行自动控制研究所西安710076

作者简介:

通讯作者:

中图分类号:

TP311TH701

基金项目:

国家自然科学基金青年项目(62201177)项目资助


Aircraft telemetry data collective anomaly detection based on long time scale characteristic modeling optimization
Author:
Affiliation:

1.School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China; 2. Shijiazhuang Hai Shan Aviation Electronic Technology Company Ltd., Shijiazhuang 050200, China; 3.AVIC Xi’an Flight Automatic Control Research Institute, Xi’an 710076, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    飞行器遥测数据是地面判断卫星在轨状态的唯一来源。异常检测有助于飞行器运行过程的视情动态决策,并能有效减少故障。然而,现有方法主要关注短时变化,难以有效识别集合异常模式。针对这一问题,提出了一种基于长时间尺度特性建模优化的飞行器遥测数据集合异常检测方法。首先,构建时序关联依赖模型,提取遥测数据片段中的高维时序规律并生成预测结果;然后,利用预测结果与观测数据之间的残差,构建统计模型,提取分布特征并形成异常检测判据;最后,利用迭代预测自动调整模型输入,提升集合异常检测的鲁棒性。通过实际飞行器姿态角数据的验证,结果表明,相比VAE-LSTM模型,异常片段的检出率提升了0.041,F1分数提升了0.039,证明了该方法在提高检测精度和降低漏检率方面的优势,为卫星视情运维提供可靠的基础数据支撑。

    Abstract:

    Aircraft telemetry data are the only source for ground-based assessment of satellite in-orbit status. Anomaly detection facilitates condition-based dynamic decision-making during aircraft operations and effectively reduces failures. However, existing methods primarily focus on short-term variations, making it difficult to identify collective anomaly patterns effectively. To address this issue, this article proposes a collective anomaly detection method for aircraft telemetry data based on long timescale characteristic modeling optimization. First, a temporal correlation model is formulated to extract high-dimensional patterns from telemetry data segments and generate prediction results. Then, using the residuals between the prediction results and observed data, a statistical model is developed to extract distribution characteristics and establish anomaly detection criteria. Finally, iterative prediction is employed to automatically adjust model inputs, enhancing the robustness of collective anomaly detection. Validation using actual aircraft attitude angle telemetry data shows that, compared with the VAE-LSTM model, the proposed method improves the detection rate of anomaly segments by 0.041 and the F1 score by 0.039. These results show the method′s advantages in improving detection accuracy and reducing missed detections, providing reliable data support for condition-based satellite operations and maintenance.

    参考文献
    相似文献
    引证文献
引用本文

孙家正,宋宇晨,崔展博,李桢煜,王智鹏,刘大同.基于长时间尺度特性建模优化的飞行器遥测数据集合异常检测方法[J].仪器仪表学报,2024,45(11):312-321

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-26
  • 出版日期:
文章二维码