强化学习引导变导纳控制的机械臂精密轴孔装配模糊位姿估计与精确调整
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165

基金项目:

国家自然科学基金青年基金(52301410)项目资助


Reinforcement learning guided variable admittance control for fuzzy pose estimation and precise adjustment of robotic precise peg-in-hole assembly
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在非结构化环境下,机器人精密轴孔装配是一个非合作问题。 轴姿态的不确定性给后续孔的搜索和插入带来了挑战, 因此,机器人需要调整轴的姿态来消除轴对孔的姿态偏差。 将姿态调整分为粗调整和精调整两个阶段。 首先,在粗调整阶段, 在轴孔未接触时采集轴的力-角度样本,输入到多层感知机(MLP)模型进行训练,引导机械臂进行粗调整。 其次,在精调整阶 段,建立 RLVAC 模型。 通过建立轴孔接触模糊推理模型来估计轴孔接触状态。 基于轴孔接触状态,通过融合了模糊奖励机制 的强化学习算法找到最优的导纳控制参数,实现轴孔表面的紧密贴合。 最后,对未知姿态的轴进行了综合实验。 从调整精度、 运行时间、成功率等方面与其他常规方法进行了比较分析。

    Abstract:

    The robotic precise peg-in-hole assembly in the unstructured environment is a problem of non-cooperative games. The position uncertainty of the peg brings challenges to the subsequent hole search and insertion. Hence, the robot needs to adjust the position of the peg to eliminate the peg-in-hole posture deviation. In this article, the peg adjustment is divided into two stages, including rough adjustment and fine adjustment. First, in the rough adjustment phase, the force-angle samples of the peg are collected when the peg does not contact the hole. They are used as the input of the MLP model for training. In this way, the robot arm for rough compensation is guided. Next, in the fine adjustment phase, the RLVAC model is formulated to estimate the peg-in-hole contact state and accurately adjust the position of the peg. A peg-hole contact fuzzy inference model is established to estimate the peg-in-hole contact state. Based on the peg-in-hole contact state, the optimal admittance control parameters are found by the reinforcement learning algorithm, which incorporates the fuzzy reward mechanism to realize the tight fit of the peg-in-hole surface. Finally, the comprehensive experiment is implemented on the peg with an unknown posture. Comparison with other conventional methods is analyzed in terms of adjustment accuracy, running time, and success rate.

    参考文献
    相似文献
    引证文献
引用本文

宁 睿,刘志晨,刘 毅,魏金波.强化学习引导变导纳控制的机械臂精密轴孔装配模糊位姿估计与精确调整[J].仪器仪表学报,2024,45(11):170-177

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-26
  • 出版日期:
文章二维码