基于塔形工件的五轴数控机床旋转轴几何误差自标定辨识方法
DOI:
CSTR:
作者:
作者单位:

1.宁波大学机械工程与力学学院宁波315211; 2.宁波市微纳运动与智能控制重点实验室宁波315211; 3.上海交通大学机械与动力工程学院上海200240

作者简介:

通讯作者:

中图分类号:

TH161

基金项目:

国家自然科学基金面上项目(52175470)资助


Self-calibration identification method for rotary axis geometric errors based on tower-shaped workpiece
Author:
Affiliation:

1.Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China; 2.Ningbo Key Laboratory of Micronano Motion and Intelligent Control, Ningbo 315211, China; 3.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着制造业精度要求的提高,五轴机床几何误差的高效辨识是实现精密加工的重要基础。提出一种基于塔形工件的自标定方法,能够同步辨识旋转轴(C轴)、线性轴及工件的几何误差。该方法通过设计五层阶梯状塔形工件,结合线性轴三维体积误差模型,将线性轴误差离散表示于三维网格节点上,并利用多角度探测数据构建超定方程组,采用最小二乘法实现误差参数的高效估计。实验成功辨识了C轴的4项位置无关几何误差和6项位置相关几何误差,同时量化了线性轴与工件的几何误差。实验结果表明,该方法在重复装夹条件下对C轴误差辨识具有良好的稳定性,具备长期监测能力。为进一步验证其准确性,以盘形工件为对照开展误差对比实验,结果显示两者在误差辨识结果上的平均吻合度达到89.8%,验证了该方法的准确性。结合蒙特卡洛模拟进行不确定度分析,表明该方法在测量系统误差和环境扰动下仍具有良好的鲁棒性和可靠性。该方法无需依赖高端测量设备或复杂路径规划,支持工件重复装夹和自动化测量,具有操作简单、成本低、适应性强等优势,为五轴机床几何误差的高效辨识提供了实用可行的技术方案。

    Abstract:

    With the growing demand for manufacturing precision, efficiently identifying geometric errors in five-axis machine tools has become essential for achieving high-accuracy machining. This paper presents a self-calibration method utilizing a tower-shaped workpiece, enabling the simultaneous identification of geometric errors in the rotary axis (C-axis), linear axes, and the workpiece itself. The approach involves designing a five-tier stepped tower-shaped workpiece and incorporating a three-dimensional volumetric error model for the linear axes, which discretizes linear axis errors at grid nodes within a 3D space. An overdetermined system of equations is constructed from multi-angle probing data, and the error parameters are estimated using the least squares method. Experimental results successfully identify four position-independent and six position-dependent geometric errors of the C-axis, alongside the geometric errors of the linear axes and the workpiece. The findings demonstrate the method′s high stability in identifying C-axis errors under repeated clamping, confirming its potential for long-term monitoring. To further assess accuracy, a comparative experiment using a disk-shaped reference workpiece was conducted, revealing an average consistency of 89.8% in error identification results. A Monte Carlo-based uncertainty analysis confirms the method′s robustness and reliability in the presence of measurement system errors and environmental disturbances. Importantly, the proposed method does not rely on high-end measurement equipment or complex path planning. It supports repeatable clamping and automated measurement, offering advantages such as ease of operation, low cost, and strong adaptability. This makes it a practical and efficient solution for high-precision geometric error identification in five-axis machine tools.

    参考文献
    相似文献
    引证文献
引用本文

倪俊涛,项四通,陈科鉴,张海南,杨建国.基于塔形工件的五轴数控机床旋转轴几何误差自标定辨识方法[J].仪器仪表学报,2025,46(5):90-102

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码