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摘　 要:针对城市峡谷等复杂场景下,智能手机全球导航卫星系统(GNSS)信号易受多径和非视距效应干扰,从而导致定位精度

与可靠性显著下降的问题,故提出一种基于多源自主导航系统理论框架的全球导航卫星系统 / 行人航位推算( GNSS / PDR)弹性

图优化自主导航方法。 该方法从系统可检测性与可重构性两个维度出发,设计了一种状态自适应故障检测与梯度下降回归自

主重构机制的弹性容错架构,以增强导航系统在动态变化环境中的鲁棒性能。 在可检测性方面,设计了一种状态关联的动态故

障检测机制:若上一历元未检测到故障,采用滑动窗口下的动态 3σ 统计检测法进行异常判断;若上一历元已检测到故障,则切

换为基于指数加权移动平均的动态阈值策略,以持续跟踪潜在异常。 在可重构性方面,一旦检测到故障,系统能够通过梯度下

降回归方法对 GNSS / PDR 算法进行故障诊断与自主重构。 该重构过程首先利用历史新息完成系统状态的预测,其次根据异常

新息与修复新息之间的动态关系对完成幅值修正,最终实现对异常观测值的动态修复。 经实验验证,本方法的定位平均误差较

扩展卡尔曼滤波(EKF)算法、基于 Huber 核的 M 估计 EKF 算法、因子图优化(FGO)算法和基于 Huber 核的 M 估计 FGO 算法下

降了 20%以上。 这表明该方法在提升基于智能手机的行人导航在复杂多径和非视距环境下的定位精度和鲁棒性上具有一定

的优势,为未来消费级设备的精度定位应用提供了解决思路。
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Abstract:To
 

address
 

the
 

challenge
 

of
 

degraded
 

positioning
 

accuracy
 

and
 

reliability
 

in
 

smartphone
 

global
 

navigation
 

satellite
 

system
 

(GNSS)
 

signals
 

caused
 

by
 

multipath
 

and
 

non-line-of-sight
 

effects
 

in
 

complex
 

environments
 

such
 

as
 

urban
 

canyons
 

and
 

dense
 

high-rise
 

areas,
 

this
 

paper
 

proposes
 

a
 

resilient
 

graph
 

optimization-based
 

global
 

navigation
 

satellite
 

system / pedestrian
 

dead
 

reckoning
 

( GNSS /
PDR)

 

autonomous
 

navigation
 

method
 

within
 

a
 

multi-source
 

integrated
 

navigation
 

system
 

framework.
 

Focusing
 

on
 

system
 

detectability
 

and
 

reconfigurability,
 

the
 

approach
 

designs
 

an
 

elastic
 

fault-tolerant
 

architecture
 

that
 

incorporates
 

state-adaptive
 

fault
 

detection
 

and
 

gradient
 

descent
 

regression-based
 

autonomous
 

reconfiguration,
 

aiming
 

to
 

enhance
 

the
 

robustness
 

of
 

the
 

navigation
 

system
 

under
 

dynamically
 

changing
 

environmental
 

conditions.
 

In
 

terms
 

of
 

detectability,
 

a
 

state-correlated
 

dynamic
 

fault
 

detection
 

mechanism
 

is
 

introduced.
 

When
 

no
 

fault
 

is
 

detected
 

in
 

the
 

previous
 

epoch,
 

a
 

sliding-window-based
 

dynamic
 

3σ
 

statistical
 

detection
 

method
 

is
 

applied.
 

When
 

a
 

fault
 

is
 

detected
 

in
 

the
 

previous
 

epoch,
 

a
 

dynamic
 

threshold
 

strategy
 

based
 

on
 

exponentially
 

weighted
 

moving
 

average
 

is
 

employed
 

for
 

continuous
 

anomaly
 

monitoring.
 

In
 

terms
 

of
 

reconfigurability,
 

once
 

a
 

fault
 

is
 

identified,
 

the
 

system
 

performs
 

fault
 

diagnosis
 

and
 

autonomous
 

reconfiguration
 

using
 

a
 

gradient
 

descent
 

regression-based
 

GNSS / PDR
 

algorithm.
 

The
 

reconfiguration
 

process
 

first
 

utilizes
 

historical
 

innovations
 

to
 

predict
 

the
 

system
 

state,
 

then
 

performs
 

magnitude
 

correction
 

based
 

on
 

the
 

dynamic
 

relationship
 

between
 

abnormal
 

and
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repaired
 

innovations,
 

and
 

finally
 

achieves
 

dynamic
 

recovery
 

of
 

abnormal
 

observations.
 

Experimental
 

results
 

demonstrate
 

that
 

the
 

proposed
 

method
 

reduces
 

the
 

average
 

positioning
 

error
 

by
 

more
 

than
 

20%
 

compared
 

to
 

traditional
 

extend
 

Kalman
 

filter
 

( EKF),
 

Huber-based
 

M-
estimation

 

EKF,
 

factor
 

graph
 

optimization
 

( FGO),
 

and
 

Huber-based
 

M-estimation
 

FGO
 

algorithms.
 

These
 

findings
 

indicate
 

that
 

the
 

proposed
 

method
 

offers
 

significant
 

advantages
 

in
 

enhancing
 

the
 

positioning
 

accuracy
 

and
 

robustness
 

of
 

smartphone-based
 

pedestrian
 

navigation
 

under
 

challenging
 

multipath
 

and
 

NLOS
 

environments,
 

providing
 

a
 

valuable
 

reference
 

for
 

the
 

development
 

of
 

high-precision
 

positioning
 

applications
 

in
 

future
 

consumer-grade
 

devices.
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navigation;
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factor
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dynamic
 

fault
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gradient
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0　 引　 　 言

　 　 随着智能手机以及各种穿戴式智能设备的发展和广

泛普及,广大用户对基于智能手机的位置服务的精度和

连续性提出了更高的要求。 然而,在城市复杂环境中,由
于建筑物、树木、高架桥梁等的遮挡,全球导航卫星系统

( global
 

navigation
 

satellite
 

system,
 

GNSS)可见卫星数会明

显减少,观测信号也因多径效应和非视距效应等导致质

量明显异常,进而影响定位精度[1] 。 因此,仅依赖智能手

机低成本传感器平台提供的 GNSS 定位结果通常难以为

用户提供连续稳定的定位服务[2] 。 为确保行人导航定位

结果的可靠性,借助其他定位技术来辅助 GNSS 定位变

得尤为必要。 在行人导航中,行人航位推算( pedestrian
 

dead
 

reckoning,
 

PDR)和 GNSS 定位是常用的定位方法。
PDR 定位借助手机内置微机电系统惯性测量单元( micro

 

electromechanical
 

system
 

inertial
 

measurement
 

unit,
 

MEMS
 

IMU),通过递推方式计算航向角和步长,但受限于硬件

性能,其误差会随时间推移显著积累,限制了其在实际场

景中的应用[3] 。 因此,利用 GNSS 和 PDR 系统间的信息

融合与优势互补,已成为智能终端领域提升定位准确性

和系统可靠性的主流研究方向[4] 。
在 GNSS 和 PDR 的各种组合导航方案中,松组合模

式因架构简单、算力需求低等优势,在移动终端定位领域

得到广泛应用[5] 。 但是松组合模式缺乏冗余观测量,一
旦观测量发生故障,若直接剔除或隔离,将因观测量不足

而无法有效约束 PDR 状态递推的误差发散。 因此 GNSS
的观测粗差成为制约智能手机松组合导航精度提升的关

键因素。
为削弱城市峡谷等复杂场景中智能手机由多径效应

和非视距信号对 GNSS 定位异常观测的问题,需要信息

融合方法具备自主抗扰容错与智能重构优化能力[6] 。 文

献[7]提出了一种故障修复增强的抗差扩展卡尔曼滤波

的 GNSS / PDR 组合导航方法, 提高了复杂环境下的

GNSS / PDR 系统的准确性和鲁棒性。 文献[8]提出了一

种验前验后粗差探测的 GNSS / PDR 的定位算法,可实现

复杂城市环境中稳定连续的导航定位。 上述研究普遍采

用基于扩展卡尔曼滤波(extend
 

Kalman
 

filter,
 

EKF)框架

进行数据融合,并通过抗差滤波的思想实现鲁棒定位。
但由于行人运动轨迹是连续的,而 EKF 的一阶马尔可夫

假设限制了对历史数据的再评估,使得更新过程中无法

应用更多的历史信息,这在一定程度上影响了连续轨迹

跟踪的稳定性和精度。
与卡 尔 曼 滤 波 相 比, 因 子 图 优 化 ( factor

 

graph
 

optimization,FGO)算法在处理非线性问题和全局优化上

展现出显著的优势,为导航信息融合提供了另一种解决

途径[9] 。 文献[10] 将 FGO 算法引入 GNSS / PDR 中,进
一步提高了智能手机 GNSS / PDR 的定位精度。 FGO 的

鲁棒估计方法主要包括 M 估计和基于图的方法[11] 。 前

者通过构建具有饱和特性的鲁棒核函数对超出预设阈值

的观测残差实施非线性降权[12] ;后者通过增加额外权重

约束因子对异常量测的弹性处理[13] 。 在复杂城市环境

中,受行人导航运动学特征的影响,智能手机 GNSS 信号

的故障特征进一步呈现出跳跃性突变和连续渐进式衰减

的非单一场景故障特征[14-15] 。 在行人导航场景中,当接

收机受到建筑物瞬时遮挡时,常会产生跳跃性突变[16] ;
当行人从遮挡区域逐渐移动到部分开放区域时,由多径

效应、信号遮挡衍射等影响并非瞬时消失,而是随着接收

机的移动和环境反射条件的变化呈现渐进式衰减[17-18] 。
基于这种故障背景,上述两类算法均存在局限性:M 估计

的核函数在应对连续故障时,存在权重调节滞后的现象;
基于图的方法也主要解决较大的突变性故障,难以有效

应对这种连续渐进式衰减故障[19] 。
针对上述非单一故障场景,现有的自主导航技术难

以结合不同场景实现较为可信完备的自主导航技术应

用。 而文献[20] 提出的多源自主导航系统体系提供了

一种科学的解决方案,该体系从系统可检测性,系统可重

构性,系统可信性和系统完备性出发,能够全面、准确评

估系统的性能和状态,及时发现系统的故障和缺陷,同时

提高自主导航系统环境自适应和功能重构能力。 为了提

高行人 GNSS / PDR 组合导航复杂场景下的定位精度和

鲁棒性,本文将基于 FGO 的鲁棒估计引入 GNSS / PDR 算

法中。 同时为确保系统的容错性能和可靠输出,提高自

主导航系统环境自适应和功能的重构能力,基于多源自
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主导航系统理论框架,从系统可检测性和可重构性出发,
本文提出了一种 GNSS / PDR 弹性图优化自主导航方法,
主要研究内容为:

1)
 

在可检测性上,针对复杂城市环境中智能手机

GNSS 信号跳跃性突变和连续渐进式衰减的故障特征,提
出一种状态关联的动态故障检测方法。 区别于大多静态

单一的阈值检测策略,该方法可根据上一历元故障状态

对本历元实施差异化处理,分为正常状态和连续故障状

态检测:若上一历元未出现故障,即处于正常状态,则采

用滑动窗口的动态 3σ 准则进行故障检测;若上一历元存

在故障,即处于连续渐进式衰减的故障状态,采用基于指

数加权移动平均法( exponential
 

weighted
 

moving
 

average,
 

EWMA)的动态阈值检测完成故障检测。
2)

 

在可重构性上,针对 GNSS / PDR 松组合模型欠观

测冗余的问题,提出一种基于梯度下降线性回归(gradient
 

descent
 

linear
 

regression,
 

GDLR)的 GNSS / PDR 的故障修复

方法。 该方法将 GDLR 引入基于图优化的 GNSS / PDR 的

定位中,实现异常值的修复:首先利用过去历元的新息序

列通过 GDLR 进行修复,然后根据当前异常观测新息与修

复新息的关系估计故障幅值,从而对异常观测进行更新修

正,最后通过因子图优化进行数据融合。
3)

 

在实验结果评估上,基于开源实际数据对本文所

提方法进行定性定量评估验证,证明了本文所提方法的

有效性和可行性。

1　 基于图优化的 GNSS / PDR 组合导航算法

1. 1　 PDR 算法原理

　 　 PDR
 

是利用智能手机内置 MEMS
 

IMU 传感器来推

算行人位置的算法。 在已知初始位置的前提下,分析采

集的数据以估计行人的运动方向和行走距离,从而实时

估算出目标位置[21] 。 它能够在没有外部信号辅助的情

况下,独立计算出用户的位置和移动路径,其基本原理如

图 1 所示。

图 1　 PDR 算法原理

Fig. 1　 Principle
 

diagram
 

of
 

PDR
 

algorithm

假设用户前一时刻的位置为 (xk,yk),k至 k + 1 时刻

的移动距离为 Lk,航向角为 θ k,则用户在 k + 1 时刻的位

置(xk+1,yk+1) 可由式(1)计算得出。 该方法通过步频探

测和步长估计推算行人移动距离[22] ,通过航向更新推算

行走偏转角度,最终实现定位,如式(1)所示。
xk+1 = xk + Lk × cos θ k

yk+1 = yk + Lk × sin θ k
{ (1)

1. 2　 基于图优化的 GNSS / PDR 组合导航

　 　 因子图由因子节点,变量节点和无向边组成。 因子

节点表示因子函数,变量节点表示随机变量。 在因子图

模型中,每个因子节点都通过一个误差模型来进行建模,
以反映与该节点相关的不确定性和误差特性。

若在 t i 时导航系统状态量为 x i,
 

那么每一个因子节

点 f i(x i), 都应用适当的误差模型进行建模,其中最常见

是用高斯分布进行建模,如式(2)所示。
f i(x i) = d[erri(x i,zi)] (2)

式中: erri(x i,zi) 为因子节点 f i(x i) 所对应的误差函数;
zi 为导航传感器的实际量测量;d(·) 代表因子节点

f i(x i) 所对应的代价函数。
具体地,对于 PDR 因子而言,采用状态模型描述其

误差函数 ePDRi (x i,zi), 对于 GNSS 因子而言, eGNSS
i (x i,zi)

表示其误差函数, 如式(3) ~ (4)所示。
‖ePDRi (x i,zi)‖2

Λi
= ‖f(x i -1) - x i‖

2
Λi

=

x i -1 +
L i -1 × cos θ i -1

L i -1 × sin θ i -1

é

ë

ê
ê

ù

û

ú
ú( ) - x i

2

Λi

(3)

‖eGNSSi (x i,zi)‖2
Σ i

= ‖h(x i) - zi‖
2
Σ i

= ‖x i - zi‖
2
Σ i

(4)
式中: f(x i) 是一个 PDR 过程模型,相应的状态转移概率

捕捉了系统动态和可能的过程噪声。 h(x i) 是量测模型,
描述了如何根据当前位置产生量测数据。 Λi 和 Σ i 分别

表示过程噪声和量测噪声。
于是可以通过将因子相乘得到概率函数最大化,并

考虑到所有因子采用负指数形式,取负对数后,该最大化

问题转化为非线性最小二乘问题,如式(5)所示。

XMAP =argmin
X

{ ∑
i

k = 1
fk(xk-1) - xk

2
Λk

+

∑
i

k = 1
hk(xk) - zk

2
Σ k } (5)

将式(3) ~ (4)代入式(5),得到式(6),即:

XMAP = argmin
X

{ ∑
i

k = 1
xk-1+

Lk-1 × cos θ
Lk-1 × sin θ

é

ë

ê
ê

ù

û

ú
ú( ) - xk

2

Λk

+

∑
i

k = 1
‖xk - zk‖

2
Σ k } (6)

式中:argmin(·)表示最小化代价函数,通过运用高斯-牛
顿法或莱文贝格-马夸特法,能最小化式(5)所表达的整

体代价函数,从而求得状态的最优估计值。
基于上述分析,可以构建出基于 GNSS / PDR 的因子

图模型,如图 2 所示。
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图 2　 基于 GNSS / PDR 的因子图模型

Fig. 2　 Factor
 

graph
 

model
 

based
 

on
 

GNSS / PDR

进一步分析式(5)和(6)可知,整体迭代优化过程不

仅能够充分利用状态之间的历史关联性,而且对于非线

性模型,也能借助迭代过程逐步逼近最优估计结果,展现

出良好的适应性与优化能力。

2　 GNSS / PDR 弹性图优化自主导航方法

　 　 从式(5)和( 6) 可以得出,对于欠冗余的松组合模

式,若直接剔除或隔离发生故障的观测,此时状态估计

完全依赖 PDR 递推,则没有足够的观测量来约束状态

递推的误差发散。 因此,导航系统的自主的可重构性

即完成数据修复,对于提高欠冗余组合导航系统定位

精度和鲁棒性至关重要,它能有效解决因数据异常或

　 　 　 　

中断导致的定位重新初始化等问题,具有重要的现实

意义[23] 。
为了有效提高行人 GNSS / PDR 组合导航复杂场景

下的定位精度和鲁棒性,确保系统的容错性能和可靠输

出,基于多源自主导航系统理论框架,从系统可检测性,
可重构性出发,提出了一种 GNSS / PDR 弹性图优化自主

导航方法。 在系统可检测性上,本文设计了一种状态关

联的动态故障检测法以实现非单一场景的自主可检测;
在系统可重构性上,本文采用线性回归的梯度下降法完

成系统故障修复与重构。
其中,梯度下降法是一种通过迭代优化求解线性模

型参数的监督学习方法,通过迭代调整权重以最小化预

测误差。 在故障修复中,线性回归模型常用于建立监测

参数与故障状态之间的线性关系,而梯度下降则用于高

效求解模型参数,适合处理大规模数据或在线学习场

景[24] 。 目前,基于 GDLR 的故障检测法常用于电力系统

故障分类预测[25] 等领域,相较于传统正规方程法,GDLR
支持增量式更新,适用于 GNSS 等实时流数据场景。 本

文提出的 GNSS / PDR 弹性图优化自主导航方法具体如

图 3 所示。

图 3　 系统流程

Fig. 3　 Flow
 

chart
 

of
 

system
 

algorithm
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　 　 该方法首先采用状态关联的动态故障检测法,根据

上一历元故障状态对本历元实施差异化处理,分为正常

状态和连续故障状态检测。 若上一历元未出现故障,即
处于正常状态,采用滑动窗口的动态 3σ 统计检测法进行

故障检测;若上一历元存在故障,即处于连续渐进式衰减

故障状态,则采用基于 EWMA 的动态阈值检测实现故障

检测。 一旦检测到故障,将进行基于 GDLR 的 GNSS /
PDR 图优化算法进行故障修复;若无故障,则直接进行

因子图优化融合。
2. 1　 系统可检测的动态故障检测方法

　 　 在复杂城市环境中,智能手机 GNSS 信号误差在跳跃

性突变故障和连续衰减故障下的统计特性差异显著,而单

一检测准则难以兼顾两类场景。 此外,连续渐进式衰减故

障会导致历史数据污染,进一步加剧误差累积效应。 为实

现自主导航系统的可检测性,本文提出了一种状态关联的

动态故障检测方法,通过两阶段实现自适应切换,即:
1)

 

正常状态检测

正常状态检测,即上一历元未检测出故障时,假定为

当前环境相对稳定,此时发生故障多为跳跃性突变故障。
考虑到在 GNSS / PDR 定位系统中,PDR 自主性高,

不易受到外界干扰,同时为避免重复优化,提高计算效

率,本文在对故障检测中,利用 GNSS 观测值和 PDR 递推

得到的状态估计值之差作为检验统计量,即第 n 历元的

新息 si, 如式(7)所示。
si = f(x i -1) - zi (7)
由于新息通常服从正态分布,而 3σ 准则基于正态分

布的置信区间,能够以低计算成本,较为高效检测突变异

常,故选择 3σ 统计检测法作为正常状态检测下的故障检

测基准方法。
为有效检测 GNSS 观测数据中的故障,本文设计了

滑动窗口的 3σ 统计检测方法。 首先利用滑动窗口提取

当前历元前 m 个历元的新息数据,构建一个局部时间序

列窗口。 随后,计算第 k 个窗口内观测数据的均值 μ k 和

标准差 σk,并基于 3σ 准则设定故障检测的阈值范围。
对于当前历元的观测值,若其超出该阈值范围,则判定为

故障;否则,认为观测值正常。
在本实验中,GNSS 更新频率约 1

 

Hz,即 1
 

s 一次。
考虑行人运动学特征,超过 10

 

s 的时间可覆盖典型城市

道路场景的局部环境稳定性周期,同时基于惯性传感器

的步态研究中,相关研究表明窗口大小设为 14 被验证为

特征下的最优值[20] 。 于是本文选择 14 为一个滑窗周

期,即 m = 14。 于是可以构建统计特征向量 S init, 如

式(8)所示。
S init = [s1,s2,…,sm] (8)

式中: si 为第 i 历元新息值。
下面基于 3σ 检测法计算第 k 个窗口内新息数据的

均值 μ k 和标准差 σk, 由于新息服从零均值的正态分布,
具体如式(9) ~ (10)所示。

μ k = 0 (9)

σk =
1

m - 1∑
n

i
(si - uk)

2 (10)

若 si - uk > 3σ k,则判定该历元出现故障;否则认

为该历元观测值正常。
该方法通过动态更新滑动窗口内的统计特性,同时

利用 3σ 准则的统计特性有效识别异常观测值,从而提高

故障检测的鲁棒性和准确性。
2)

 

连续故障状态检测

由序列概率比可证明,若第 n - 1 个历元存在故障,
则第 n 个历元发生故障的条件概率显著高于独立事件假

设[26] 。 这表明,当系统在上一个历元已检测到故障时,
当前历元处于持续性干扰环境的可能性较大,此时可假

设系统处于连续渐进式衰减状态。
尽管上一历元的故障已完成修复,但其修复的新息可能

仍携带未被完全消除的拟合偏差等误差,若将其纳入历史数

据统计,会导致均值与标准差的渐进式偏移,可能会造成漏

检和错检。 因此不能继续使用 3σ 准则进行故障检测。
在该故障场景下,各历元观测量具有短期时间相关

性,于是可以采用线性回归捕捉这种时序依赖关系。
GDLR 可以通过捕捉 GNSS 的短期时间相关性,实时响应

数据变化[20] ,实现故障的修复。 由于在城市复杂环境中

多路径效应的动态变化导致的连续故障往往具有渐进式

衰减特性。 因此,本文设计了一种基于 EWMA 的动态阈

值检测法,该方法可捕捉误差的累积趋势效应,其核心逻

辑如下,具体流程如图 4 所示。

图 4　 基于 EWMA 的动态阈值检测

Fig. 4　 Dynamic
 

threshold
 

detection
 

based
 

on
 

EWMA
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该方法将该历元的新息实际值和 GDLR 的新息预测

值之差作为系统输入。 鉴于故障的连续性,该方法基于

EWMA 构建新息累积误差 sumn,以实现新息序列误差的

趋势特征提取,并通过遗忘因子平衡历史数据和当前信

息的权重。 在动态阈值设定上,通过方差补偿因子修正

EWMA 方差缩减效应[27] 。 为实现检测灵敏度与稳定性

的动态平衡,在参数动态调节上,通过累积误差和动态阈

值的关系实现控制阈值参数的动态调整。 在检测到故障

后,使用基于 GDLR 模型的预测值而非实际值来更新统

计量,避免故障数据污染后续估计。
通过 GDLR 模型得到当前的新息值修正值 􀭹γ i,计算

新息残差 ri = γ i - 􀭹γ i , 即实际新息相对于修正新息的

误差值。
设第 i个历元的新息积累误差为 sumi, 引入 EWMA,

如式(11)所示。
sumi = αri + (1 - α) sumi -1 (11)

式中: α 是遗忘因子,表示上一历元的数据对当前统计量

的影响,用于捕捉缓变故障的累积效应,一般取值为

0. 2 ~ 0. 4。
第 i 个历元的动态阈值为 th_sumi, 如式(12)所示。

th_sumi = p i·σ i -1· 1
2 - α

(12)

其中,该阈值由上一滑动窗口的标准差 σ i -1,遗忘因

子 α 和累积误差检测系数 p i 决定。 p i 的值一般在

2 ~ 2. 5,p i 越小,表示灵敏度越高,有较低漏检率,高误

报的风险。
若累积误差 sumi 大于动态阈值 th_sumi 时,则判定

该历元出现故障。 这表明连续漂移故障仍存在,需要继

续进行故障检测。 此时,通过 GDLR 进行新息修正,并根

据 sumi 和 th_sumi 的大小关系,对控制阈值的参数进行

动态调整:当累积误差值超过阈值的一半时,控制阈值的

参数扩大,该参数扩大倍数一般取值为 1 ~ 1. 5,本文选取

1. 2;反之,缩小控制阈值的参数,该参数缩小倍数一般取

值为 0. 8 ~ 0. 95,本文选取 0. 9。 随之进入下一轮循环。
反之,若累积误差 sumi 小于动态阈值 th_sumi, 则判定连

续渐进式衰减故障的影响消除,无需进行下一轮的故障

检测。
2. 2　 系统可重构的 GDLR 故障修复

　 　 在完成 GNSS / PDR 松组合定位系统的故障检测后,
一旦检测到故障,需要完成相应的故障修复重构工作。
针对该模型欠观测冗余的问题, 本文提出一种基于

GDLR 的 GNSS / PDR 组合导航系统故障修复方法。 该方

法将 GDLR 引入基于图优化的 GNSS / PDR 的定位中,实
现异常值的修复。 该方法主要分为 3 个阶段:新息预测、
幅值修正和观测值更新。

1)
 

新息预测

为了实现当前异常历元的新息修正, 本文基于

GDLR 算法,根据前 m 历元的新息序列预测当前历元的

新息,从而完成新息的修正。 具体而言,GDLR 可以捕捉

各历元数据之间的时序相关性,实时响应数据变化,有效

实现故障数据的修复。 主要计算过程为:
设训练集 D = {(x( i) ,y( i) )} m

i = 1,其中,m 为训练样本

数,x( i) 表示第 i 个历元,y( i) 是第 i 个历元的新息值。 若

ŷ( i) 是第 i 个样本的预测值,则损失函数 J 定义如式(13)
所示。

J = 1
2m∑

m

i = 1
( ŷ( i) - y( i) ) 2 (13)

然后,通过链式法则计算梯度,如式 ( 14) ~ ( 15)
所示。

∂J
∂w j

= 1
m∑

m

i = 1
( ŷ( i) - y( i) )x( i)

j ,　 j = 1,…,n (14)

∂J
∂b j

= 1
m∑

m

i = 1
( ŷ( i) - y( i) ) (15)

式中: w j 是第 j 个历元新息的权重参数;b j 是偏置项。
若 β 为学习率,则参数更新规则如式( 16) ~ ( 17)

所示。

w j = w j - β ∂J
∂w j

,　 j = 1,…,n (16)

b j = b j - β ∂J
∂b j

,　 j = 1,…,n (17)

最后检查是否满足停止条件:若满足,则结束流程并

输出最优模型参数;若不满足,则重新计算预测值,进入

下一次循环。
新息的预测基于上述优化后的 GDLR 模型参数。 结

合算法的效率、保证训练数据的时序有效性,本方法构建

长度 m= 40 的滑动训练窗口,即以当前异常历元为基准

向前截取 40 组连续新息数据作为模型的输入,若当前历

元为 i,将第 i - 1 历元的 新息输入训练完成的 GDLR 模

型,最终得到第 i 历元异常新息的预测。
2)

 

幅值修正

新息是观测值和一步预测值的差值,当系统模型足

够准确时,新息将反映为实际的观测误差。 基于此,本文

构建了异常观测新息与修复新息的误差传递模型,用于

定量计算
 

GNSS
 

故障幅值补偿量,进而实现幅值的修复。
幅值修复计算公式,如式(18)所示。
A i = γ i - 􀭹γ i (18)

式中: A i 是异常幅值的补偿量;γ i 为当前历元的异常新

息,􀭹γ i 为修复的新息。
3)

 

观测值修复

完成幅值修复后,系统可根据故障幅值对当前异常

进行更新修复,如式(19)所示。
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􀭴zi = zi ± A i (19)
式中: 􀭴zi 为修正后的观测值;zi 为当前历元的异常观测;
A i 为对应的修复幅值。 依据新息数据的正负,动态调

整异常观测值与故障幅值之间的关系。
因此,当检测的到故障时,系统会将预测的新息对幅

值进行修复,得到修正的观测值,随后将修正后的观测值

与一步预测值进行 FGO 数据融合,最终获得最优估计结

果。 本节故障修复总体流程图如图 5 所示。

图 5　 基于 GDLR 故障修复算法系统

Fig. 5　 System
 

block
 

diagram
 

based
 

on
 

GD-LR
 

fault
 

repair
 

algorithm

3　 实验验证

3. 1　 实验设计与故障设计

　 　 为量化评估本文算法的可行性和适用性,本文选取

真实数据[4] 进行实验。 为验证所提方法在实测数据情况

下依然维持性能,采取在真实数据上注入故障偏差的模

式,以构建真实城市的复杂环境。 实验场地设定在一个

周长为 400
 

m 的跑道上。 实验数据通过华为 Mate40pro
智能手机内置传感器完成采集,通过诺瓦泰公司生产的

SPAN-CPT 设备解算的定位结果作为评判误差的标准。
该组合导航系统配备战术级 IMU,并结合了先进的滤波

技术,能够提供厘米级的高精度定位,其 IMU 技术参数

如表 1 所示。

表 1　 SPAN-CPT
 

IMU 技术参数

Table
 

1　 SPAN-CPT
 

IMU
 

technical
 

parameters

IMU 参数指标 参数范围

加速度计

陀螺仪

零偏 / mg ±50. 00

零偏稳定性 / mg ±0. 75

速度随机游走 / (deg·s-1·h-0. 5 ) 0. 03

零偏 / (deg·h-1 ) ±20. 00

零偏稳定性 / (deg·h-1 ) ±1. 00

角度随机游走 / (deg·h-0. 5 ) 0. 006
 

7

　 　 为了模拟城市环境中智能手机 GNSS 信号跳跃性突

变和连续性渐进式衰减的故障特征,本文在随机历元随

机添加这两种故障。
在复杂的城市环境中,多径效应和衍射现象会导致

的偏差的累积,进而表现为东 / 北向坐标的持续偏移,这
种偏移通常会产生跳跃性的突变,其幅度一般在其产生

的跳跃性突变通常在 10 ~ 30
 

m[28] ,因此,在本实验中模

拟的跳跃性突变故障设定为 10 ~ 30
 

m 范围的随机值。
渐进式连续衰减是信号强度随环境反射条件变化而逐渐

减弱的过程,指数衰减模型能够有效描述这种误差随时

间和空间的动态衰减特性[29] 。 基于此,本文构建了渐进

式连续衰减的指数模型,如式(20)所示。
ΔE( i) = A·e -kt (20)

式中: A 为初始偏差,与遮挡强度、反射体的反射系数有

关,如金属建筑物反射信号强,可导致较大的初始误差;
k 为衰减系数,与接收机移动的速度,环境的反射条件变

化有关,k 越小表示受到的多径效应等影响越明显,其值

一般取 0. 05 ~ 0. 2[30-31] ;t 表示已持续衰减的历元数。
基于此,本实验添加的故障如表 2 所示。

表 2　 具体添加故障说明

Table
 

2　 Description
 

of
 

specific
 

fault
 

addition

故障添加位置 故障类型 故障描述

第 90 历元

第 650 历元

第 90 ~ 115 历元

第 310 ~ 338 历元

第 400 ~ 430 历元

第 620 ~ 649 历元

第 658 ~ 662 历元

第 1
 

010 ~ 1
 

025 历元

跳跃性

突变

连续渐进

式衰减

东向添加 20
 

m,北向添加 15
 

m

东向添加 30
 

m

北向添加:A= 20,
 

k= 0. 10

东向添加:A= 30,
 

k= 0. 05

东向添加:A= 30,
 

k= 0. 04

北向添加:A= 30,
 

k= 0. 05

东向添加:A= 15,
 

k= 0. 15

北向添加:A= 25,
 

k= 0. 07

　 　 为充分验证本文算法的有效性和可行性,本文将其

与几种流行算法应用于 GNSS / PDR 组合导航实验中进

行对比,各对比算法的类型及说明详见表 3。

表 3　 对比的算法类型和说明

Table
 

3　 Types
 

and
 

descriptions
 

of
 

algorithms
 

comparison

算法 说明

EKF 常规的 EKF[5]

EKF-M
M 估计自适应 EKF 算法[6]

 

(基于 Huber 核函数,
常数 c= 1. 35)

FGO 常规因子图算法[4]

FGO-M
M 估计自适应 FGO 算法[11](基于 Huber 核函数,

常数 c= 1. 35)

FGO-GDLR 本文算法
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3. 2　 实验结果与分析

　 　 本实验分别采用 EKF、EKF-M、FGO、FGO-M 和 FGO-
GDLR 进行对比试验,这 5 种方案的轨迹和水平误差结

果分析如图 6、7 所示。

图 6　 真实轨迹和不同方案估计轨迹

Fig. 6　 True
 

trajectory
 

and
 

estimated
 

trajectories
 

of
 

different
 

schemes

图 7　 各方案水平位置误差对比

Fig. 7　 Comparison
 

of
 

horizontal
 

position
 

errors
 

among
 

different
 

schemes

综合图 6 和 7 的结果,各算法在准确性和稳定性方

面表现排序依次是: FGO-GDLR、 FGO-M、 FGO、 EKF-M、
EKF。 EKF 算法的轨迹在故障出现时,出现最严重的偏

移。 相比之下,EKF-M 的准确性优于 EKF,这也说明了

引入抗差鲁棒方法的重要性。 然而,EKF 系列算法的表

现能力相较于 FGO 系列的算法较弱。 这是由于 EKF 仅

需单次线性化迭代,使得更新过程中无法应用更多的历

史信息,易因误差累积导致发散,因此不太适合运用在较

为复杂的城市环境中。
而 FGO 系列的算法表现较好,但在复杂环境下,当

智能手机 GNSS 信号出现异常值时,FGO 算法也无法迅

速感知异常值导致传感器性能变化,认为异常的观测值

依旧在可控范围内,从而导致估计误差增大。 在应对突

变故障时,FGO-M 和 FGO-GDLR 均表现出较好的优势。
然而面对连续渐进式衰减的故障时,FGO-M 由于存在权

重调节滞后使其定位误差较差,而 FGO-GDLR 能较为有

效地应对该故障。
表 4 给出了各算法的误差和运行时间对比,由表 4

可知,与 EKF、EKF-M、FGO 和 FGO-M 相比,本文的 FGO-
GDLR 算法的最大水平误差由 45. 78、19. 41、16. 75 和

6. 08
 

m 下降到 3. 56
 

m,平均误差由依次降低了 56. 48% 、
45. 64% 、47. 39%和 22. 49% 。

表 4　 各算法误差对比

Table
 

4　 Comparison
 

of
 

error
 

among
 

algorithms

定位算法
最大水平

误差 / m
平均误差

/ m
均方误差

/ m
标准差

/ m
运行时间

/ s

EKF 38. 12 3. 01 34. 22 5. 89 0. 010
 

0

EKF-M 18. 13 2. 41 10. 18 2. 91 0. 062
 

5

FGO 15. 75 2. 49 12. 67 2. 71 0. 343
 

8

FGO-M 6. 25 1. 69 3. 88 1. 01 0. 468
 

8

FGO-GDLR 3. 68 1. 31 2. 31 0. 66 0. 321
 

8

　 　 从运行时间来看,EKF 及 EKF-M 算法因其较低的计

算复杂度而表现出显著优势。 然而,与 FGO 类算法相

比,EKF 类算法在精度上存在明显不足。 FGO 类算法由

于其基于迭代优化的特性,计算时间相对较长。 本文算

法相较于 FGO 和 FGO-M 算法,在运行时间上分别实现

了约 6. 40% 和 31. 47% 的效率提升,这表明 FGO-GDLR
在实现精度较高的同时,有效地控制了计算开销,避免了

因引入新的优化策略而导致的运行时间显著增长,实现

了精度与效率的良好平衡。
为了更直观对各算法进行对比,本实验对 EKF-M、

FGO、FGO-M 和 FGO-GDLR 之间的误差进行对比分析,
具体如图 8 所示。

图 8　 各方案各误差对比

Fig. 8　 Comparison
 

of
 

position
 

errors
 

among
 

different
 

schemes
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由图 8 和表 3 相关数据可综合得出:
1)在算法框架上,FGO 系列算法相较于 EKF 系列展

现出的性能优势,本质源于其底层优化原理的差异。
EKF 作为递归贝叶斯估计方法,采用递推的局部优化策

略,其线性化误差会随迭代过程逐步累积,导致长期定位

精度下降;而 FGO 基于因子图模型进行批量优化,通过

观测数据的联合概率最大化实现全局最优解搜索,这使

得其能有效抑制误差累积效应,因此 FGO 系列在表征长

期稳定性的标准差和极端场景下的最大误差指标上均呈

现显著优势。
2)在同类算法内部改进中,EKF-M 通过引入抗差

鲁棒估计增强了对异常观测值的抑制能力,但受限于

递归框架的局部优化特性,其最大误差仍显著高于

FGO 系列。 而 FGO-GDLR 在 FGO 系列算法中表现出

较高的优势,这表明 FGO-GDLR 在处理复杂环境下的

定位问题时,具有更高的精度和鲁棒性。 通过引入

GDLR 和状态关联动态故障检测机制,FGO-GDLR 能够

有效应对突发性和连续性故障,提升欠冗余组合导航

系统的定位性能。

4　 结　 　 论

　 　 为解决复杂环境下智能手机信号易受多径和非视距

信号影响导致的导航精度下降问题,确保系统的容错性

和可靠输出,基于多源自主导航系统理论框架,本文提出

一种 GNSS / PDR 弹性图优化自主导航方法。 在系统的

可检测性上,设计了一种状态关联的故障检测机制,若上

一历元未检测到故障,采用滑动窗口的动态 3σ 统计检测

法;若上一历元检测到故障,则采用基于 EWMA 的动态

阈值法进行故障检测。 在系统的可重构性上,一旦检测

到故障,采用 GDLR 的 GNSS / PDR 算法完成故障修复,
即新息预测、幅值修复和观测修正:首先利用历史新息完

成新息预测,再通过异常新息和修复新息的关系完成幅

值修正,然后将完成更新修正的观测值进一步与预测值

重新进行 FGO 数据融合得到位置的最优估计值。 在实

验结果的评估上,通过开源数据集实验定性定量分析了

所提方法的有效性和可行性。
该方法在多源自主导航系统的理论框架下,能够及

时发现系统的故障和缺陷,同时提高了自主导航系统环

境自适应和功能重构能力。 较好地解决了在跳跃突变

性 / 连续渐进式衰减非单一故障场景下的检测灵敏度和

稳定性矛盾,同时为观测量异常场景下的定位连续性问

题提供了一种解决方案。
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