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Abstract:To address the challenge of degraded positioning accuracy and reliability in smartphone global navigation satellite system
(GNSS) signals caused by multipath and non-line-of-sight effects in complex environments such as urban canyons and dense high-rise
areas, this paper proposes a resilient graph optimization-based global navigation satellite system/pedestrian dead reckoning ( GNSS/
PDR) autonomous navigation method within a multi-source integrated navigation system framework. Focusing on system detectability and
reconfigurability, the approach designs an elastic fault-tolerant architecture that incorporates state-adaptive fault detection and gradient
descent regression-based autonomous reconfiguration, aiming to enhance the robustness of the navigation system under dynamically
changing environmental conditions. In terms of detectability, a state-correlated dynamic fault detection mechanism is introduced. When
no fault is detected in the previous epoch, a sliding-window-based dynamic 3¢ statistical detection method is applied. When a fault is
detected in the previous epoch, a dynamic threshold strategy based on exponentially weighted moving average is employed for continuous
anomaly monitoring. In terms of reconfigurability, once a fault is identified, the system performs fault diagnosis and autonomous
reconfiguration using a gradient descent regression-based GNSS/PDR algorithm. The reconfiguration process first utilizes historical

innovations to predict the system state, then performs magnitude correction based on the dynamic relationship between abnormal and
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repaired innovations, and finally achieves dynamic recovery of abnormal observations. Experimental results demonstrate that the proposed

method reduces the average positioning error by more than 20% compared to traditional extend Kalman filter (EKF), Huber-based M-

estimation EKF, factor graph optimization ( FGO), and Huber-based M-estimation FGO algorithms. These findings indicate that the

proposed method offers significant advantages in enhancing the positioning accuracy and robustness of smartphone-based pedestrian

navigation under challenging multipath and NLOS environments, providing a valuable reference for the development of high-precision

positioning applications in future consumer-grade devices.

Keywords : pedestrian navigation; GNSS/PDR integrated navigation; factor graph optimization; dynamic fault detection; gradient

descent regression
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Table 3 Types and descriptions of algorithms comparison
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Fig. 6 True trajectory and estimated trajectories

of different schemes
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among different schemes
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Table 4 Comparison of error among algorithms
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Fig. 8 Comparison of position errors among different schemes



5510 1] X

R 4. —Fp GNSS/PDR #PEEIILfL A 3 Wik 315

Hi [l 8 FI 3 A CHHE FI 27515 Y .

1) fERIERESE | FGO RANVFEILME T EKF R51) )@
B 1 Rl A B, A TR T R 2 AR R B 22 R
EKF E 7388 5 DU S8 1 J7 vk | SR 1388 41 1) Jg & 00 Ak 5K
W, AR PR AR 25 S Bl AT R A0 R, S 8O € 17
K EE B 10 FGO JEF PR 7 A AL 474k 2 O Ak, 3l 2o
LT 50H0 P K15 E 3 B R AL S I 4 SRy e (L A4 R, i il
FHHBEA A il 25 BRROY, I FCO RINTERNMEK
R e P bR 22 A 5 T I KR 22485 1
BT ) T

2) FE R Bk N etk b EKF-M 3 3 5] A B 22
A TR SR T X S R UL A A4 R T, EAZ BR T
WIAMES Y R EB LR, R KRR ZMB E AT
FGO %741, 1fi FGO-GDLR £ FGO £ 4| %3k b R B
Bm e, X £ FGO-GDLR 76 4b 3 4 22 B85 T 110
PRk VA 1P = R S S =R o L R e SO U N
GDLR FHAR S Gk 3 A B 4 ML, FGO-GDLR fEf%
BN € Sz M R Bk R BT R T AR AL A S
RGN ENPERE

4 &

NRUE Ze A TR TG 55 2 2R AR IR
{55 R B0 T AURS B2 T Fe ) B, B OR 3R 40 10 25 vk
AT SER I T2 A E R R GEISHESE AR SCHE
— 7l GNSS/PDR Pk E LAk A T AL Tk, TEREN
ARSI b BT T — bR 2 SCHR A s B A I B, 5
— DI JCAK I B S, R T sh B 0 h S 30 Gei A
7 b oA DU B HRE R L T EWMA 1Y 33
B A TR BEAS I, E RG] EAGME L — B
F#k k% %l GDLR Y GNSS/PDR v 52 Ji i B 4% 42
RIHT B IR0 | e (A8 A2 RUOIAE 1F . e SR D sk 3 B 58
BT S TIP3 A T R RIE SR G R 58 R
{EABIE , R J5 R 5 BT 808 1E 1) SO0 D00 A — 25 5 T 1
FHIEAT FGO B i & 15 2007 B i Fe AL Al e, 758
B S5 H VAL L 38 2k I VR R 2 S 00 PR o T
JIT 4 7 A RO R AT AT

EHEAEZE A ER M ARG IS HELT | Ge0% I
Bt 2 B0 3R G A B R R B, TR B 2 8 T B R R R A A
Bi A A BE A BE ), B b A e T TE R BR 28 R
P/ 3% S 2 PR AR B — B S S AR I R
FROEPEIT I , TR Sk LI o 53 5 37 5 T 1) 2 o i 22 1 (]
R T — R R T %

S 3k

(1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

WENG D J, CHEN W, DING M Y, et al. Sidewalk
matching: A smartphone-based GNSS  positioning
technique for pedestrians in urban canyons[ J]. Satellite
Navigation, 2025, 6(1): 4.

BERE, PREGEL, XU, BT 2Ahiitig 2 oNss 2t
WU o ol B R (0], T AR, 2024,
47(11) : 169-175.

LUO SH Q, CHEN R Q, LIU Y. Data fusion of GNSS
common-view multi-reference stations based on robust
estimation [ J ]. Electronic Measurement Technology,
2024, 47(11) ; 169-175.

O, T, ZF. FT U PDR BIEENE AL
R )]. BT 5 2R, 2024, 38(12)
211-217.

MA J, WANG J, LI ZH. Research on indoor localization

method based on improved PDR algorithm[ J]. Journal of

Electronic Measurement and Instrumentation, 2024,
38(12): 211-217.
JIANG CH H, CHEN Y W, CHEN CH, et al.

Implementation and performance analysis of the PDR/
GNSS integration on a smartphone [ J]. GPS Solutions,
2022, 26(3) . 81-89.

AR, A, TR, F. WS E R AP U
i PDR/GNSS 17 A S AL 26T 1] 2% 1 36 2 4
2024, 45(2) : 233-242.

LISH Y, MENG Q, JIANG Y Y, et al. Robust filOter-
based PDR/GNSS pedestrian integration navigation
approach enhanced by fault recovery[ J]. Chinese Journal
of Scientific Instrument, 2024, 45(2) ; 233-242.

8, B, REN, F ZBEAESMARTHEY
PEFSE[T]. S-S S, 2022, 21(72) ; 11-18,10.
WANG W, GUO L, WU ZH G, et al. Research on
reconfigurability of multi-source autonomous navigation
system[ J]. Navigation and Control, 2022, 21(Z2) ; 11-
18,10.

MENG Q, LI SH Y, JIANG Y Y, et al. Smartphone-
based GNSS/PDR integration navigation enhanced by
measurements resilient adjustment under challenging
scenarios| J]. GPS Solutions, 2025, 29(1) : 23-36.
H& . ST GNSS/MEMS fR U85 1 AR T AN 3 &
LA BIZE [ D] R BBUKE, 2019.

SHAO M Y. Research on key technologies of precise
navigation for general pedestrians based on GNSS/MEMS



316 & f A & ¥ M Hid46
sensors| D]. Wuhan; Wuhan University, 2019. Xiaomi Mi 8 android smartphone and positioning
[ 9] MM, X, X7, . T HENHAFERKS performance analysis[ J]. Electronics. 2019, 8(1): 91-
B ONSS/INS & S E[T]. BT EELR, 106.
2024, 47(10) : 56-61. [19]  BRERIR, AN, Bhiaes, &5, 2TFA5 Nt iy &
ZHAO H L, LIU F CH, LIU N, et al. Integrated B IE N R TR & S EIE ], (R
navigation method for vehicle GNSS/INS based on R, 2024, 45(1): 120-129.
adaptive factor graph [ J ]. Electronic Measurement CHEN X Y, ZHOU Y CH, ZHONG Y L, et al. Robust
Technology, 2024, 47(10) : 56-61. adaptive factor graph optimization integrated navigation
[10] RER, T, g —Fh3T ERFT A0 FE algorithm based on variational Bayesian [ J ]. Chinese
SERTTE Y] AR AL, 2023, 44(6): 126- Journal of Scientific Instrument, 2024, 45 (1) 120-
134. 129.
ZHU J L., WANG D, XU X Z. A pedestrian cooperative [20] E#. LW HEFMARGEEAREEIR[T]. FHF
localization method based on graph optimization [ J]. R, 2023, 44(4) . 519-529.
Chinese Journal of Scientific Instrument, 2023, 44(6) . WANG W. Research on basic characteristics of multi-
126-134. source autonomous navigation system [ J]. Journal of
[11] WATSON R M, GROSS J N. Robust navigation in GNSS Astronautics, 2023, 44(4) . 519-529.
degraded environment using graph optimization[ J]. 30th [21] BT+, BAEFHL GNSS 5 PDR fl& & i 53k M fg
International Technical Meeting of the Satellite Division of PEAG BARFSE IR D], M. P ETIE R, 2024,
The Institute of Navigation, 2017 1898-1910. GE Y X. Performance evaluation and software imple-
[12] WANGJ W, CHEN X Y, SHI CH F, et al. Robust M- mentation of GNSS/PDR fusion positioning algorithm on
estimation-based ICKF for GNSS outlier mitigation in smartphones [ D ]. Xuzhou: China University of Mining
GNSS/SINS navigation applications[ J]. IEEE Tran- and Technology, 2024.
sactions on Instrumentation and Measurement, 2023, 72 [22] W32, XUhn#E, AAE4E, 5. &F PDR Bk KAN T
3306521. R HERE TS [ 1] 7 I S AR 2, 2022,
[13] WEN W S, ZHANG G H, HSU L T. GNSS outlier 36(11) . 178-185.
mitigation via graduated non-convexity factor graph DI K, LIU J X, DU J J, et al. Research on the
optimization [ J ]. IEEE Transactions on Vehicular improvement of step size estimation model of PDR
Technology, 2021, 71(1): 297-310. algorithm [ J ]. Journal of Electronic Measurement and
[14] ZANGENEHNEJAD F, GAO Y. GNSS smartphones Instrumentation, 2022, 36(11) . 178-185.
positioning: Advances, challenges, opportunities, and [23] LIBF, QINY AN, LIU T X. Geometry-based cycle slip
future perspectives [ J ]. Satellite Navigation, 2021, and data gap repair for multi-GNSS and multi-frequency
2(1). 1-23. observations[ J ]. Journal of Geodesy, 2019, 93 (3):
[15] LOS, GAO G. ASHMAN B W. Position, navigation, 399-417.
and timing technologies in the 21st century: Integrated [24] JA&EME. HMLERFJ [ M]. dbaT. WK% W L,
satellite  navigation[ M]. Manassas: Institute  of 2016 98-103.
Navigation, 2020. ZHOU ZH H. Machine learning[ M ]. Beijing: Tsinghua
[16] KAWAMOTO S, TAKAMATSU N, ABE S. RINGO: A University Press, 2016 98-103.
RINEX pre-processing software for multi-GNSS data[ J]. [25] /MR, BF AN TR AR MEERIZI8 ) R G 5
Earth, Planets and Space, 2023, 75(1) : 54-68. KWW D]. Kt KEM TR, 2021.
[17] ZHANG G H, HSU L T. Performance assessment of WANG X D. Power system fault classification and on the
GNSS diffraction models in urban areas[ J]. Navigation, artificial and prediction base intelligence and the data
2021, 68(2): 369-389. mining[ D]. Tianjin; Tianjin University of Technology,
[18] ROBUSTELLI U, BAIOCCHI V, PUGLIANO G. 2021.
Assessment of dual frequency GNSS observations from a [26] FERME, DEHE, R, —F3ETF X [65E 500 RS



5510 1] X

R 4. —Fp GNSS/PDR #PEEIILfL A 3 Wik 317

[27]

(28]

(29]

[30]

[31]

T (5775 CN 114115185A[ P, 2022-03-01.
WANG ZH H, MA Y D, CHEN H. A fault detection
method based on data reliability and interval evidence
reasoning; CN 114115185A[ P]. 2022-03-01.

K. T & LASSO B{E B EWMA 5 2248
PEpE il KRR SOeAe[ D). 2855 . SR, 2023.
GAO L L. Research and optimization on EWMA
covariance matrix control charts based on adaptive LASSO
thresholding [ D J.
2023.

NG H F, ZHANG G H, LUO Y R, et al

Qinhuangdao: Yanshan University,

Urban
positioning ; 3D mapping-aided GNSS using dual-frequency
pseudorange  measurements from  smartphones[ J].
Navigation, 2021, 68(4) : 727-49.

BRGS0 R 2 AR R S AR SE (D). b
it AERTHEFIR S, 2020.

LIU P Y. Research on urban high precision multipath
error model [ D ]. Beijing: Beijing University of Civil
Engineering and Architecture, 2020.

JUR. TR ST 2 AR AF S RS R 22 AL O ik 0F
FE[D]. Kib: EPRHRY, 2021.

KANG X. Research on satellite navigation multipath
signal simulation and error evaluation method [ D ].
Changsha: National University of Defense Technology,
2021.

FENG T, CHEN SH L, FENG ZH K, et al. Effects of
canopy and multi-epoch observations on single-point
positioning errors of a GNSS in coniferous and broad-
leaved forests [ J]. Remote Sensing, 2021, 13 (12).
2325.

fEE®IT

X R 2024 4F T R R RS ARAG 2+
AL, BN AR HE K2 B e, R Y
DTIEHAT N AL SRR A

E-mail : lingling@ seu. edu. cn

Liu Ling received her B. Sc. degree from

South-Central University for Nationalities in

2024. She is currently a master student at Southeast University.

Her main research interests include pedestrian navigation, and
multi-source information fusion.

EBGEEEH), 2018 4F T 5 s
LIPNINE SR GL I e S VA W B N PN IE A
B, ARSI, EEARSE )5 A S
SERFME IR RRPERL S S TS E AL
E-mail ; glanmeng@ seu. edu. cn

Meng Qian( Corresponding author) received
his Ph. D. degree from Nanjing University of Aeronautics and
Astronautics in 2018. He is currently an associate professor and a
Ph. D. advisor at Southeast University. His main research interests
include autonomous navigation integrity, multi-source information
resilient fusion and assured positioning.

F=JLER, 2018 4F Tt st AR5 2
37, BRI 5O KA BRI T S A0 o
TR, BT ARG 2 IR A S
BHERAL
E-mail : fanchen_meng@ 163. com

Meng Fanchen received his Ph. D. degree
from Peking University in 2018. He is currently a navigation
senior engineer at Beijing Institute of Aerospace Control Devices
(BIACD).

autonomous navigation, and inertial navigation.

His main research interests include multi-source



