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A dual-level saliency-driven vehicle component detection method
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of Intelligent Robot Perception and Control in Electric Power System, Baoding 071003, China)

Abstract: High-precision vehicle component detection and segmentation play a vital role in intelligent damage assessment systems by
assisting in the accurate localization of damaged parts. However, challenges remain due to complex backgrounds and the performance
bottlenecks of traditional detection methods constrained by single-level feature representations. To address these issues, this article
proposes a dual-level saliency-driven vehicle component detection method. At the image level, DeepLabV3 is employed with a
combination of three loss functions to extract salient foreground regions and suppress background interference. At the feature level, a
detection and segmentation framework is formulated based on YOLOv11, where a spatial attention pyramid pooling structure is integrated
during feature extraction to enhance multi-scale feature aggregation. Additionally, an attention-guided saliency map module is designed to
achieve global modeling and spatial enhancement. To evaluate the effectiveness of the proposed method, a customized vehicle component
dataset for multi-part detection is constructed, and extensive experiments are conducted. Ablation studies confirm the contribution of
each module. In comparative experiments, the method achieves improvements of 3. 5% in detection accuracy and 3. 7% in segmentation
accuracy over the baseline model. Visualization results further show that the proposed approach focuses more accurately on salient
component regions and effectively reduces false detections and missed detections caused by complex backgrounds. Moreover, the method
shows strong generalization capability on the public Car Seg dataset, achieving superior performance across multiple evaluation metrics.

Overall, the dual-level saliency-driven architecture significantly enhances vehicle component detection performance through salient
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foreground extraction and attention-guided multi-scale feature aggregation, providing new practical insights for intelligent damage

assessment in the vehicle insurance industry.

Keywords :intelligent loss assessment; vehicle component detection; saliency detection; attention mechanism; multi-scale features
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Fig. 10 Distribution chart of the number of different category mask instances in the VP59 dataset (top) and the Car Seg ( bottom)
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Table 1 Category of vehicle components dataset

¥ 5 Eg s ¥ 5 vy ¥ 5 2R
1 4 P8l 21 HMNRIT () 41 A DR B AT B2
2 it 22 SRR () 42 JETRBEAT B
3 LN 23 WA (£) 43 GO EREs ]
4 M 24 WRAT (£7) 44 S5 RS B3
5 TS 25 WL (£) 45 g w5 (A0
6 RAT (%) 26 [IEZSNEED) 46 G5 (7))
7 RAT(H) 27 HIRAT (Z2) 47 JE PRIGAT R0 XT (42
8 HTRAMR 28 HIRIT (£5) 48 JE PRI AT AR (45)
9 ek 29 BT T4 (22) 49 JETTAMLF ()
10 o bR 30 BT %% () 50 JETAMLTF ()
11 R 31 JRTIHM 5 (22) 51 Jam AR E (Z5)
12 BFH17 32 T 1Hi% () 52 JEmFAREEE ()
13 25 (12) 33 HT 35 (/) 53 T IS T (76)
14 HEX @) 34 AT TR (£7) 54 HITIAMLF ()
15 R4 35 SR8 (7)) 55 A AR AE e (Z2)
16 JER ML (47) 36 RIS () 56 HfM-F AR E (£7)
17 JRII5E(A) 37 AR (Z2) 57 I
18 JRI7E(h) 38 B H () 58 S R AL L IR
19 HTI58 (26) 39 JRMFR(2) 59 TR AT s Al
20 CIIREACED! 40 JEMFHR () -
oo TP (9) &?%étﬁlﬂymig4o41Jﬂs,%HQCUDA1L3ﬂwﬁﬂﬁ
" TP+ FN Y5, HEHLIE TN Python 3.8.12, W 4% JF & HE 42 N
p oo TP (10) PyTorch 1. 11. 0, H AR F & F 73 BEF R 640x640 , i
" TP+ FP BT BEMLRE I T RS, IR = I R W RN
mAP:iian(Rn)an (1) 9.0005\,%)] aigzﬁﬁﬁomizﬁ@ﬁ 0.937,4it
c =i WK/ 16, SRR ELH 300,

Horpr, € 2 AR a0 20 B i, TP R HBH TR
B FN Fon BAVE B0 RCE: , FP 3R (B B i
Rn 25 n E IR Pn(Rn) 3E 25255 n 19 F 01K
J& R B XERE A5 n RS EE o X 43 13— B it 487
YT AR AT B0 2375 B A S Y AP, mAP 2 it A 26
S AP BR8] T B PP AG BB p I 2R 808 | RE
S R I SR RS A PERE . TR A I ) 4% 28 2 8000 1
Bbox [ ToU , 75 A - 2K5 B Det_mAP™ ; 78 43 #] v |
ERBHN DL T 158 FE G Segm 1Y ToU , 15 5] 43 4 1
Jics Seg_mAPSOo
2.3 EWIREHINGSH

PR AL PR B A S IRAS S 1k 2 s, BEALAY
IR AR AE NVIDIA 3090Ti Llk s kAT,

®2 ®ESRES

Table 2 Hardware and version numbers

B4 A

BE NVIDIA 3090Ti
BAERSE Ubuntu 24. 04. 1 LTS
AR PR Python3. 8. 12 Pytorchl. 11. 0

3 ZWERSHMH

3.1 HRRECIG
AT UE AR AR AR B A R T 2 4T
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RS20+ 1) I B P 502 T 3 A K Bl 1) A A8 < e R R
TR LAl b 38 3 A DeepLabV3 35 HUAY &k 25 14 &1
Fr AT RGN 52 ) TR W RRAE 2 T 2 SR Bl A R < TE
BELAAY Y Bt b, o3 0] A Y B T s TR B i o
AL S5 1 SAPP FIE & ) 5 SR AIE 2 & 1 181 AR A
e C2SNA HEAT A M, d5e 2 A ) A o3 ) 25 2R 3k 3
Frs
x3 EHAHEMIBRER
Table 3 Ablation test results of module

Tk HTEREL SAPP C2SNA Det_mAP™/% Seg mAP*/%

FEL AL 52.0 51.5
FiAD 1 v 54.1 53.1
B 2 vV 52.7 52.2
K] % 53.2 52.7
By 4 vV 53.6 53.1

SR AT vV vV 55.5 55.2

3 R TR HCA G F By S e 45 R LA
UEAS B BRI PERE A DTk . SRR TULE Det_mAP™ Al
Seg mAPY FAUMHRES R 52. 0% F1 51. 5% , 7E L FERE
R 1A S M SR RO A 0 A 43R
e I TH 2 54. 1% 1 53. 1% , Z6 W i & P i 545 B fig
575 55 1 55 Aw DX, DA T i s G 0 R 3 0K
BERY 2 B A SAPP S5 48 I, K il 55 43 E 4 fE 4350 R
52.7% F 52. 2% , MRS T RL L BRI s A5 $2 T, B 3 4
VS C2SNA A8 A6 I 5 43 8P 58 43 il 35 3] 53. 2% I
52.7% AHEL T RL LB ALA Fr$2 7, B C2SNA RBIEH
G AR AE B, PR A PR AR, B 4 [R]FAS A
SAPP 1 C2SNA, f W F1 43 1 P B& 43 51 ik 3] 53. 6% F
53. 1% , RUIMH 45 G4 — & BB 1 AR ag & LR NE R
KRR TT UERH TR 1A S S R SRS A Rt e B
G ARG 1 52 S AR AL AE ARSI Aoy EE 55 1 43 BA S
55. 5% 1 55. 2% My e A PR AR, AHER T 5L 2R A R0 76 A6 )
Iy E] EAR BRI T 3.5% F1 3. 7% , FE A IAE TR 7 v
1E H BRI 5 43 BT 55 Hh (104G s50hE , 25 1S 8] 4 By [ 4
FHIE— 25 52T T BT Y B A PERE

e B0 MG 2 T 5 R Bl vk B A RO s
i EVE BARSRBUT AT T 4 AR SE 5, SCR A R n
4 PR,

S A IR AR B S H - torchvision. models [ 43 E]
BER Rz CRR AR 42 B &, S gm g RAER W, KT
DeepLabV3 444 AR FRZEAG I A 43 BT 55 T AORE 13 Wl 3%
ELF FCN, b4k, >R ResNet101 ( residual networks 101)
VB A REAE SR 45 (4 P BE -t B 545 T ResNet50,

x4 EEUBRRIAEMIELER

Table 4 Ablation experiment results of saliency object

acquisition (%)
WRES Det_mAP* Seg_mAP*
FCN-ResNet50 53.7 53.0
FCN-ResNet101 54.1 53.5
DeepLabV3-ResNet50 54.5 53.9
DeepLabV3-ResNet101 55.5 55.2

TEY6UEAFAE J2 1 58 2 e 8K 3 7 125 00 SO, B xt
BEWHRETEF B M a FH17T 4 HIHANSLE, 251 W
F S5 PR,

5 BEEATETS MEMIRER
Table S Ablation experiment results of the saliency

modulation factor f,

A B a Det_mAP*/%  Seg_ mAP*/%
1 54.1 53.5
2 v 54. 4 53.9
3 vV 54.5 53.9
4 Vv vV 55.5 55.2

AT 2 S a7 22 Sk v AR TR T O B R
PR, RS B b 8 e T R Ty A, BT T AR A0 4 RS
FE RRBC TR | A Prekcdk, BIAY 3 38 i 4 % SNABlock
R BORT SEBE5 B AR AL T RHE R, i — 2B $E Tt
THERE, B 4 I B WA Y X R i B A o
REA 0T | FARRAF 35k P R O T) X ] ) 4R A Al 51
BAEH., SEELT B AL AR U RN 2 EORS

S e G R A sh AR A AN A 11
B, B 11 x 1 R EF B, x2 RFFHHEF a,

—--x1

12 x2
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Fig. 11  The training iteration graph of the saliency

modulation factor
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ARAR B T, A TR A A () I B ok S 3 4 9 1Y ) A4l
REREAFAE 22 5, 22 3k AT AU R B D T 05 IR fiC
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S E TR T, LA RRAE 28 B, T FE R BB S
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H D EEACE , WML AR AE 2 ) 3 A, i s B R Yy 32
1k RE
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Fig. 12 mAP® chart for 59 vehicle components
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(a) Original image (b) Original heatmap (c) Prospect heatmap (d) Feature heatmap (e) Dual level heatmap
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Fig. 13 Multi-level heatmap comparison visualization
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Fig. 14  Qualitative comparison of vehicle component detection result
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Table 6 Performance comparison with advanced

segmentation algorithms (%)
WRES Det_mAP* Seg_mAP*

Pointrend 37.5 36.8
Mask R-CNN 38.0 36.5
Cascade Mask R-CNN 38.3 37.1
Mask Scoring R-CNN 38.6 38.0
Condinst 40.8 39.9
Transformer Integration 41.6 40.5
MTFDN 46.8 45.7
YOLOv8 48.4 47.9
YOLOv9 51.9 51.6
YOLOv11 52.0 51.5
Y 55.5 55.2

22 ML) Mask R-CNN(38.0% )4&@ T 17.5 A, It
A, TR ALA AR AR T SCHK[ 9] B9 MTFDN (46. 8% ) 11 3C
fik[ 28 1/ Transformer Integration(41. 6% ) , 3R B ik )
Krfe ), S5 53 FIPEBE (Seg_mAP™ ) J5 1l , T 245
RUGAH T 55.2% , [RIAE R T BrA % b vk AR L T
T YOLOVIL(51.5% ) ,#2F+ T 3.7 A~ H 4344,

WA, r 4 455 Y A 52451 43 04T 55 bl B T MTFDN
(45.7% ) Fl Transformer Integration (40. 5% ), Fr & 7I
FE H BRI 5 S 3 RSy BB HE T YOLO &
H  R-CNN 2 41| 4 3y B A [w] i s f 3¢
K[ 9,28 T AT XS Al A I & [T B A AL | J At o
SR V2 AR BE AN ARTE NP X RB i T XUR G
KBTI A BRAE L 0T 22 FR ARG I 174 [) L, o B e 42
RS TR A (R, DA T B A AR A RS R R
3.4 AHBIEEXLLE

hy itk — L BT 42 07 VA Iz AV AR AE A T8
AR Car Seg b5 34 240 A2 Ao ) < a5 FH 1 7 12k 3k
A7 T X LI, B B mod Ly vk TR o 1 AR R A 5
PR A28 RN 43 B S5 R B S AR R M A A | ok
RO 22 R R G S B 17 FH 3 55 rh A3 B S0 TE S
FLARAGLF5 457 AF 42 BUN 2% A ResNet50 . ResNet101 . GCNet
(global context network ) Fll ConvNext ( convolutional neural
network next) A Mask R-CNN # %] [38-41] , ™A Cascade
Mask R-CNN'®' | HTC'™" ( hybrid task cascade ).
YOLACT"*'('you only look at coefficients ) LA S Z Fl YOLO
RYNERYSIAE NG T nTLLE Y, FE Car Seg R4 -
BB A RAH LG, B SR BT Z2 PR FE AR B U T
e PEPERE , 3X —Z5 R UL P T 8= 9 25 P K Bl 42
P B g 0 65 A ARG 5 20 B M RE

x7 AHBEEESTAERDBERNERTEX L

Table 7 Comparison with existing common vehicle component detection methods on public datasets (%)
P TE bR
Jrik
Box(P)  Box(R)  Det_mAP® Det_mAP>**  Mask(P) Mask(R)  Seg_mAP*  Seg_mAP>**
ResNet50 69.2 45.9 68.6 47.8
ResNet101 72.3 50.5 72.2 52.3
Mask R-CNN

GCNet 72.3 52.5 71.6 53.0
ConvNext 75.1 51.3 74.6 54.2
Cascade Mask R-CNN 72.6 56.7 72.5 55.5
HTC 69.9 55.7 70.0 53.1
YOLACT 66. 6 44.3 66.7 49.7
YOLOvS 65.6 76.0 69.2 55.4 66. 8 77.5 70.7 55.9
YOLOvS8 62.0 78.2 70.5 60. 4 62.8 79.3 71.8 58.7
YOLOv9 61.6 77.5 71.1 60.5 62.7 78.5 72.7 59.3
YOLOv11 60. 6 78.3 70.5 62.2 61.5 79.6 71.8 60. 2
JIr Ay 66.5 79.5 76. 1 67. 1 67.8 80. 4 77.6 64.7
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ST A 5 R TR AE A (A1 4 R L A A5
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Fig. 15 Comparison of detection results on actual test images
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