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Detection of array tri-stable chaotic system for dynamic
measurement signals of drilling tool attitude

Yang Yi,Lu Jinnan,Chen Jiaona,Han Binbin
(College of Electronic Engineering, Xi'an Shiyou University, Xi'an 710065, China)

Abstract ; In the process of attitude dynamic measurement for steering drilling tool, the bottom drilling tool combination interacts with the
rock and the collision between the drilling string and shaft wall generates strong vibration, which leads to multi-frequency and high-
amplitude noise interference in the original measurement signal, resulting in the extremely low signal-to-noise ratio of the drilling tool
attitude measurement signal, or even completely annihilated in the noise. This severely affects the accuracy of attitude parameter
calculation such as inclination angle. In order to solve this problem, this paper proposes an array tri-stable chaotic system detection
method used for the dynamic measurement signal. Firstly, a variable-scale processing of the drilling tool measurement signals is
performed on the drilling tool measurement signals, which involves reconstructing and transforming the frequency values of the
characteristic signals to meet the constraints of phase transition of the tri-stable system output. Second, considering the deviation of
traditional frequency detection methods caused by the random variation of the initial phase angle of drilling tool measurement signals, a
frequency detection model based on the array tri-stable chaotic system is proposed, relying on the collaborative work of the different
chaotic equations for driving signals, a full-phase coverage frequency detection method is realized to eliminate the influence of the initial
phase angle of drilling tool measurement signals on the frequency detection results. Finally, a parameter estimation model based on
another array tri-stable chaotic system is designed to synchronously estimate the amplitude and phase of the drilling tool measurement
signal,, and then recovers the complete drilling tool measurement signal. Simulation and real drilling data experiments show that this

method can detect the signal-to-noise ratio threshold of the measured signal as low as =18 dB, and that the errors of the inclination are
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lower than 1°, Compared with the signal distortion problem of traditional filtering methods in extremely low SNR scenarios and the

detection deviation problem of bi-stable chaotic systems due to incomplete phase coverage, this method exhibits significant advantages in

both signal detection accuracy and inclination angle calculation precision.

Keywords : dynamic measurement of drilling tool attitude ; array tri-stable chaotic system; frequency detection; parameter estimation
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I S fE A, 0.58
IR o 1
WAL Ff1
B ME
Ak Ode4 ( Runge-Kutta)
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AKX AT 5 04728 RUBE AR B B3] — 2 28 G i 1 A
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X E SR AT VR, 7T LA 2 S WK S5 S v A ok
—120° 0}, 2 48 it AH B BR AR &= R RO T A A a0
El 8(d) i~ , MULRIHL BAGS () PAEME N
10 rad/s BYAGIRAR I A5 5 AR AN A 4
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Fig. 8 Phase trajectories of array tri-stable system

under different parameters
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S 1) AKX (15) BrsBESI R 1, I3 IR 15 5 A e {E
A, PEATOE 24 A, =0.602 1 BF, 28458 fi H AR L0 52 BE
AR AAS K RIS, I 9(a) B, itt—4 1
i A, =0.602 1 27 S I 1 4 AP0 BRAR i
8BRS E S n(0) WRRBERRAR, AL 1(2) 1 SNR

M=20 dB $#£55]-18 dB 5 ELE R A 9(b) Firs,
1.5¢
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(a) SNR=-20 dB

-1.5 -1.0 -05 0 0.5 1.0 1.5
(b) SNR=18 dB
B9 FEHITAE 1(y=0°,A,=0.602 1) ki TR
Fig. 9 Output of the array equation 1 (y=0° A, =0.602 1)

RTLLEE, PRSI 5 1 e AR 00 S PR3 I A
KR FEIAZS 6 A, =0.602 1 [T 06 FLE, (H 25
fliiFAY SNR BIEA-18 dB, B & TA5RALIN Y SNR BIHE.,

K (15) BRI A2 2 F0 3 Bl S A i i
RO L MR E S R, 24 A, =0.577 5 H SNR=
—18 dB B, (15) Fros FEF 75 F2 2 (4 H ARSI an &l 10
TN T T O B NN - - S o 1
A,=0.577 5 JEFEHI L 2 (I FLE; 24 A, =0.605 6 H.
SNR=-20 dB B}, 20 (15) B M5 I R 3 14 % AL
WA 11 FrzR BT LA H 5L B 5 b i R R TR I 25, A
It A, =0. 605 6 JE[(451 7 3 B FAA . 75 E UL A,
JAEBESJ5RE 3 /9 SNR B -20 dB, AR F 244
TR BE S =R IR T 2R 409 SNR B{EA5 - 18 dB, B 15
T ARAGI A SNR HI{H

1 LA 43 HT R, 24 B 4 = AR TR Tl R 8 1 A s A
WA AEBRAR R, 3 AN BRI SR S IEAE A A, =
0.6021,A,= 0.5775,1,=0.605 6, 5c¥ A, Fl A, fEA
K (17) , 15 BL A 125 5 IR A Al T 0.019 7,

-1.5 -1.0  -05 0 0.5 1.0 l.‘5
Bl 10 FEFIJTRE 2(y=180°, A,=0.577 5) Ml HPIRES
Fig. 10  Output of the array equation 2 (y=180°,1,=0.577 5)
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Fig. 11 Output of the array equation 3 (y=90°,1,=0.605 6)
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FiR
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3.01°; HHIEL FIR 38 , ZXURIRIE RGBS MRk K
MR, SR T e KR 2275 5 40, 2 7 HRR 2 (oot mean
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Table 2 Error statistics for parameter estimation

N iR PIAIfA -
o Bm il i {55 Ay Ay A 51 L B(E
fliiHE AHXS 15 22 fliiHE AHXT 1 22
s(t) 0.602 1 0.577 5 0. 605 6 0.019 7 1.5% —128° 6.7% -18 dB
57 - - RS B ELAN IR SRR E B R AR E N 2. 5°
E T RmmugsT BEBBONA A R, UO, MR 24 7 B
20} ! § T SRR CS-3LAS LI IE R M B i, EESHAE 5 Fr.

FHRHA/)

0 20 40 60 80 100 120 140 160 18 200
HHE R
12 FERUA B A5 R T

Fig. 12 Comparison of solution results for inclination

BE AT I3 A TR 10 222 0 i R B A7
K BRI 13 s,

R3 HANRBREFIHER

Table 3 Error statistics of inclination (°)
eI

TR
KR %E RMSE
JEGE I/ aa =X 19.31 6.79
FIR 783 8. 80 3.01
BATRIE R G 4.16 1.36
SRR RS -2.67 0.79

TR F I SRS E A
RSB H

=HInE R v

K13 Seplid il B s A
Fig. 13 Schematic diagram of main equipment for field

drilling testing

R4 ZHHUWRERSH
Table 4 Basic parameters of the field-drilling test

e HfH
T 1 740~1 805 m
Bl 10 MPa
IR 40°C
EYiN 6.6 MPa
B 1.15 g/em’
B 79 kN
AR i) 75 h
230 120 rpm
1 £ B0 fE 2.5°

RS5 MEETHERBNEESH

Table 5 Parameters of accelerometer sensors

il x y z
2= +3 g (+x1~+100 g)
i 0~ =500 Hz
REZHF 300+30 mV/g
PEREE bR R <1 mg
Rt <0.3% Fs
A (25°C) 1.5+0.1V
AR A +1 mg/C
Jet By el <0.001 s
TAELE -40°C ~ +70%C
BRI /86 171} 3 -40C ~ +125C
B4 (0. 5 ms) 10* ¢
R o e
LS 19.5 mmx 18 mmx10 mm
T 5, X SR B A = Al s D S AT R

PRAL B, I8 Hodan A KR A9 = RRR DU AR SR b AT A I 5 K
Ja SR A SR AR A 5 AT A R O e, B A O
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Fig. 14 Solution results for inclination under

different algorithms
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Table 6 Error statistics of inclination in field-drilling test

(*)
PIRES

AN
RECVES gy 17908 1799 17716 1779.4 178.8
m m m m m
FASIE e 2202 234 2,73 2,97 2.80
HEMm 025 113 437 0.32 3.6l

FIR 380
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