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Digital twin driven wavelet attention transfer network for gearbox fault diagnosis

Zhu Peng,Deng Lei, Tang Baoping,Zhang Xiaolong, Liu Yonggang

(State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China)

Abstract ; Aiming at the problems of large discrepancies between dynamic model response and the distribution of measured data, as well
as the poor generalization in fault diagnosis methods driven by simulation data, a gearbox fault diagnosis method based on digital twin
driven wavelet attention transfer network is proposed. Firstly, a virtual model of the gear transmission system was built using the lumped
parameter method to map the physical system. Key parameters were optimized with measured normal data, and fault mechanism models
were integrated to generate a rich twin fault dataset. Secondly, a discrete wavelet attention-based feature extraction network was
designed, combining the multi-scale signal decomposition capability of discrete wavelet transform with the channel attention mechanism
that dynamically focuses on strongly correlated fault features. This model effectively extracts domain-invariant fault features from both
twin and measured data in the wavelet domain. Then, to address differences in marginal and conditional distributions between twin and
measured data, a joint subdomain adaptation criterion was proposed by combining maximum mean discrepancy (MMD) and dynamic
local MMD. This criterion measures the joint feature distribution discrepancy between the two domains, enabling the transfer of the gear
twin model to real-world fault diagnosis. Finally, the proposed method was experimentally validated on a multi-stage parallel gearbox test
bench. Results showed that it achieved superior diagnostic performance across all transfer tasks, with an average classification accuracy
of 98. 10%. The method effectively enables fault diagnosis transfer from twin data to measured data under conditions of limited labeled
high-quality fault data.
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Fig. 1 Gearbox digital twin construction process
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Fig.2  Dynamic model of spur gear transmission system
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Table 1 Description of the WATN network structure

parameters of the proposed model

JREAH BRSSPk FbisH i s A g
A (4096,1)
HRZE 1 3 1 BN+ReLU (4 094,16)
WAM JZ 1 Dropout (0.1) (2 047,32)
BRUZE 2 3 1 BN+ReLU (2 045,32)
WAM 22 Dropout (0.1) (1 023,64)
HBRZE 3 3 1 BN+ReLU (1 021,64)
WAM JZ 3 Dropout (0. 1) (511,128)
BRUZ 4 3 1 BN+ReLU (509,128)
WAM JZ 4 Dropout (0. 1) (255,256)
BIZES 3 1 BN+ReLU (253,256)
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Fig.5 Gear fault simulation test device
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Table 2 Two-stage parallel gearbox structural parameters

WS TR pl MEEE g1 EE p2 N3 2
B/ mm 1.5 1.5 1.5 1.5
R 100 29 36 90
FEHfas(°) 20 20 20 20
P 5E/mm 15 15 15 15
FEF A%/ mm 70.5 20. 4 25.4 63. 4
it/ kg 2.071 0.371 0. 465 1.676

BEER/ (kg-m?) 4.2x107°  4.0x107°  9.6x107°  2.8x107°

R3 AEIRSHIEE

Table 3 Parameter settings for different working conditions

THBHK TH Wil T w2 T W3 T W4
4/ Hz 25 30 35 35
FLH/V 8 4 4 0

Wik W E(CF)

BE SR (WF)

ﬂﬁﬁﬂﬁ(MFﬁ

Ko ARl 5E K R

Fig. 6 Pictures of different gear failure modes
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Table 4 Cosine similarity between twin and measured

normal data under different working conditions

AIEAMUE T W1 T W2 T W3 T W4
Fif dak 0.739 0 0.683 6 0.662 4 0.888 1
Ay, 0.884 0 0.768 4 0.838 5 0.739 6
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Table 5 Classification accuracy of each model’s

target domain test set (%)

Tk DWNN DWANN  DDC DANN  DSAN WATN

W1 38.32 41. 64 51.42  61.43 75.00 97.22
w2 25.00 28.39 67.57 62.20 75.00 95.42
W3 63. 82 75.00 52.42  74.78  75.00 100.00
W4 46.32 47.28 99.22  95.46 99.75 99.77

TFHREE 43.36 48.07  67.65 73.46 81.18 98.10
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Fig.9 Feature visualization of different models under W1 task
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