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数字孪生驱动小波注意力迁移网络的
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摘　 要:针对仿真数据驱动的故障诊断方法存在动力学模型响应与实测数据分布差异较大、模型泛化性差的问题,提出了一种

数字孪生驱动小波注意力迁移网络的齿轮箱故障诊断方法。 首先,基于集中参数法建立了齿轮传动系统虚拟模型,实现物理实

体的映射,并采用实测正常数据对虚拟模型中关键敏感参数进行优化修正,进而融合齿轮故障失效机理模型生成丰富的孪生故

障数据集。 其次,设计了离散小波注意力特征提取网络模型,该模型的设计融合了离散小波变换的多尺度信号分解和通道注意

力机制动态聚焦强相关故障特征的特点,能在小波域层面上有效地提取孪生数据与实测数据的域不变故障特征。 然后,考虑了

孪生与实测数据的边缘分布及条件分布差异,结合最大均值差异和动态局部最大均值差异提出了联合子域自适应准则,匹配孪

生与实测数据的联合分布差异,实现齿轮箱孪生模型向真实物理实体的迁移故障诊断。 最后,在多级平行齿轮箱实验台上对所

提方法进行试验验证,试验结果表明:所提方法在所有迁移任务下均获得了较优的诊断结果,平均分类精度可达 98. 10% ,能够

在含标签的高质量故障数据稀缺条件下有效地实现孪生数据向实测数据的迁移故障诊断。
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Abstract:Aiming
 

at
 

the
 

problems
 

of
 

large
 

discrepancies
 

between
 

dynamic
 

model
 

response
 

and
 

the
 

distribution
 

of
 

measured
 

data,
 

as
 

well
 

as
 

the
 

poor
 

generalization
 

in
 

fault
 

diagnosis
 

methods
 

driven
 

by
 

simulation
 

data,
 

a
 

gearbox
 

fault
 

diagnosis
 

method
 

based
 

on
 

digital
 

twin
 

driven
 

wavelet
 

attention
 

transfer
 

network
 

is
 

proposed.
 

Firstly,
 

a
 

virtual
 

model
 

of
 

the
 

gear
 

transmission
 

system
 

was
 

built
 

using
 

the
 

lumped
 

parameter
 

method
 

to
 

map
 

the
 

physical
 

system.
 

Key
 

parameters
 

were
 

optimized
 

with
 

measured
 

normal
 

data,
 

and
 

fault
 

mechanism
 

models
 

were
 

integrated
 

to
 

generate
 

a
 

rich
 

twin
 

fault
 

dataset.
 

Secondly,
 

a
 

discrete
 

wavelet
 

attention-based
 

feature
 

extraction
 

network
 

was
 

designed,
 

combining
 

the
 

multi-scale
 

signal
 

decomposition
 

capability
 

of
 

discrete
 

wavelet
 

transform
 

with
 

the
 

channel
 

attention
 

mechanism
 

that
 

dynamically
 

focuses
 

on
 

strongly
 

correlated
 

fault
 

features.
 

This
 

model
 

effectively
 

extracts
 

domain-invariant
 

fault
 

features
 

from
 

both
 

twin
 

and
 

measured
 

data
 

in
 

the
 

wavelet
 

domain.
 

Then,
 

to
 

address
 

differences
 

in
 

marginal
 

and
 

conditional
 

distributions
 

between
 

twin
 

and
 

measured
 

data,
 

a
 

joint
 

subdomain
 

adaptation
 

criterion
 

was
 

proposed
 

by
 

combining
 

maximum
 

mean
 

discrepancy
 

( MMD)
 

and
 

dynamic
 

local
 

MMD.
 

This
 

criterion
 

measures
 

the
 

joint
 

feature
 

distribution
 

discrepancy
 

between
 

the
 

two
 

domains,
 

enabling
 

the
 

transfer
 

of
 

the
 

gear
 

twin
 

model
 

to
 

real-world
 

fault
 

diagnosis.
 

Finally,
 

the
 

proposed
 

method
 

was
 

experimentally
 

validated
 

on
 

a
 

multi-stage
 

parallel
 

gearbox
 

test
 

bench.
 

Results
 

showed
 

that
 

it
 

achieved
 

superior
 

diagnostic
 

performance
 

across
 

all
 

transfer
 

tasks,
 

with
 

an
 

average
 

classification
 

accuracy
 

of
 

98. 10% .
 

The
 

method
 

effectively
 

enables
 

fault
 

diagnosis
 

transfer
 

from
 

twin
 

data
 

to
 

measured
 

data
 

under
 

conditions
 

of
 

limited
 

labeled
 

high-quality
 

fault
 

data.
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0　 引　 　 言

　 　 齿轮箱作为机械传动系统的重要组成部分,具有传

动比大、效率高等优点,被广泛应用于航空航天、风力发

电等行业。 长期运行在变速、重载等恶劣工况环境下,齿
轮箱中齿轮不可避免地会发生磨损、裂纹或缺齿等故障。
一旦齿轮发生故障,轻者导致齿轮箱振动加剧,性能下

降,严重则会导致重大事故发生。 因此,对齿轮箱开展故

障诊断研究具有重要意义[1] 。
近年来,基于深度学习的齿轮箱智能故障诊断方法

因其具有强大的特征提取能力,受到国内外众多学者的

广泛关注[2-3] 。 这类方法获得令人满意的诊断精度的前

提是能获取目标齿轮箱大量的含标签的高质量数据

集[4] 。 然而,在实际工业场景中,齿轮箱服役工况多变,
不同工况下数据特征分布存在差异。 此外,齿轮箱绝大

部分时间是在正常状态下运行,含标签的高质量故障样

本获取费时费力,难以对建立的深度学习模型进行有效

地训练,导致故障诊断方法准确率较低。
得益于物联网、大数据、人工智能等新一代信息通信

技术的发展,使得高保真建模技术发展到了一个新阶段,
并由此产生了数字孪生技术[5] ,该技术的出现为解决上

述故障诊断问题提供了一种有效的途径。 夏景演等[6] 通

过 ADAMS 软件建立了齿轮箱的虚拟模型,并采用生成

对抗网络进行孪生数据的特征增强,有效地实现了小样

本下齿轮箱的故障诊断。 Jiang 等[7] 采用振动响应机理

模型来获取不同故障形式的齿轮仿真数据集,然后结合

设计的增强无监督领域自适应策略实现仿真向实测数据

的迁移故障诊断。 针对大多数刚出厂的旋转机械故障数

据缺乏,难以进行智能故障诊断,Yu 等[8] 提出了动力学

模型嵌入的智能机械故障诊断框架,并在平行齿轮箱上

进行了所提方法的有效性验证。 Yan 等[9] 通过动力学仿

真模型来获取仿真数据集,并采用子域自适应机制和边

缘感知正则化技术来缩小仿真与实测数据的差异,实现

了数据不平衡下齿轮箱故障诊断。 Feng 等[10] 提出了一

种数字孪生驱动的智能健康管理方法,有效地实现了不

同齿轮磨损程度下的监测与评估。 上述研究表明,数字

孪生建模与迁移学习技术的融合为解决样本稀缺条件下

的齿轮箱故障诊断难题提供了一个行之有效的方案。 但

是,仍然存在一些瓶颈:基于卷积神经网络及其变体构建

的故障特征提取模型受限于深度学习网络的“黑盒”属

性,存在可解释性差、孪生与实测数据的迁移故障特征提

取不充分的缺点;大多数方法中孪生数据故障特征向实

测数据的迁移主要通过适配不同域的边缘分布或条件分

布差异来实现,然而,由于孪生与实测数据存在较大的特

征分布差异,采用单一的领域适配方法迁移能力有限,不

能较好地促进孪生向实测数据的迁移故障诊断。
为了解决上述问题,提出了一种数字孪生驱动小波

注意 力 迁 移 网 络 ( wavelet
 

attention
 

transfer
 

network,
 

WATN)的齿轮箱故障诊断方法。 首先,一个采用实测正

常数据修正后的高保真齿轮箱数字孪生模型被建立,用
于生成丰富的孪生故障数据集;其次,搭建了小波注意力

网络,在小波域层面对孪生与实测数据的迁移故障特征

进行有效地提取;最后,设计了联合子域自适应度量准则

来匹配孪生与实测数据的联合分布差异,促进孪生体向

物理实体的迁移故障诊断,解决故障数据稀缺条件下齿

轮箱诊断难题。

1　 齿轮箱数字孪生模型构建

　 　 高保真齿轮箱数字孪生模型构建主要由虚拟空间中

的实体建模和虚实交互两个部分组成,相关流程如图 1
所示。 在虚拟空间中,结合齿轮传动系统动力学模型和

失效机理模型,进行物理实体的虚拟模型构建。 在虚实

交互方面,采用多目标寻优算法求解建立的目标函数,实
现虚拟模型的优化更新,提高建模保真度。

图 1　 齿轮箱数字孪生体构建流程

Fig. 1　 Gearbox
 

digital
 

twin
 

construction
 

process

1. 1　 两级平行齿轮箱虚拟实体模型建立

　 　 齿轮箱物理实体主要由 2 对直齿轮、3 根转轴及 3 对

轴承组成。 作为物理实体模型的有效映射,基于动力学

建模的虚拟实体模型构建是数字孪生的核心部分。 集中

参数法具有计算效率较高、求解结果可靠等特点,被广泛

应用于齿轮箱的动力学建模中。 建立的两级直齿圆柱齿

轮传动系统动力学模型如图 2 所示。
建模的假设条件为:每个齿轮为刚性轮;当一对齿轮

对啮合时,通过沿共切线方向设置的弹簧阻尼元件连接;
转轴为忽略质量的短刚性轴;滚动轴承等效为具有线性
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图 2　 直齿圆柱齿轮传动系统动力学模型

Fig. 2　 Dynamic
 

model
 

of
 

spur
 

gear
 

transmission
 

system

弹簧和粘性阻尼值的元件。 通过分别在主、从动齿轮应

用拉格朗日方程,可以获得两级圆柱齿轮传动系统十二

自由度的运动微分方程,如式(1)所示。

mp1x
··

1 =- kx1x1 - cx1 ẋ1 + Fpg1sin(α0 + β1)

mp1y
··

1 =- ky1y1 - cy1 ẏ1 - Fpg1cos(α0 + β1)

(mg1 + mp2)x··
2 =- kx2x2 - cx2 ẋ2 -

　 　 Fpg1sin(α0 + β1) - Fpg2sin(α0 + β2)

(mg1 + mp2)y··
2 =- ky2y2 - cy2 ẏ2 +

　 　 Fpg1cos(α0 + β1) + Fpg2cos(α0 + β2)

mg2x
··

3 =- kx3x3 - cx3 ẋ3 + Fpg2sin(α0 + β2)

mg2y
··

3 =- ky3y3 - cy3 ẏ3 - Fpg2cos(α0 + β2)

IMθ
··

M = TM - kθ1(θM - θp1) - cθ1( θ̇M - θ̇p1)

Ip1θ
··

p1 = kθ1(θM - θp1) + cθ1(θ̇M - θ̇p1) - Rbp1Fpg1

Ig1θ
··

g1 = - kθ2(θg1 - θp2) - cθ2(θ̇g1 - θ̇p2) + Rbg1Fpg1

Ip2θ
··

p2 = kθ2(θg1 - θp2) + cθ2(θ̇g1 - θ̇p2) - Rbp2Fpg2

Ig2θ
··

g2 = - kθ3(θg2 - θL) - cθ3(θ̇g2 - θ̇L) + Rbg2Fpg2

ILθ
··

L = kθ3(θg2 - θL) + cθ3(θ̇g2 - θ̇L) - TL

ì

î

í

ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ïï

(1)

式中: x i 和 y i( i =
 

1、
 

2、
 

3) 分别为输入轴、中间轴和输出

轴沿 x 和 y 方向的位移;kxi、cxi 和 cyi( i =
 

1、
 

2、
 

3) 分别为

对应轴上的支撑轴承在 x 和 y 方向上的刚度和阻尼;mp1、
mg1、mp2 和 mg2 分别表示第 1、2 级啮合的主动齿轮、从动

齿轮的质量;同理,θp1、θg1、θp2 和 θg2 分别表示相应齿轮的

旋转角位移;θM 和 θL 分别为电机和负载的质量惯性矩;
Ip1、Ig1、Ip2、Ig2、IM 和 IL 分别表示为对应齿轮、电机和负载

的转动惯量;cθi 和 kθi( i = 1、
 

2、
 

3) 分别表示对应轴的扭

转阻尼和刚度;TM 和 TL 分别表示电机驱动力矩与负载力

矩;α0、β1 和 β2 分别表示齿轮副的压力角、第 1 对齿轮轴

位角、第2 对齿轮轴位角;Fpg1 和Fpg2 分别表示第1、2 对齿

轮的动态啮合力,考虑齿侧间隙的动态啮合力表示为:
Fpg1 = km1 f1( t) + cm1 δ̇1( t) (2)
Fpg2 = km2 f2( t) + cm2 δ̇2( t) (3)

式中: kmi 和 cmi( i =
 

1,
 

2) 分别表示第 i 对齿轮的时变啮

合刚 度 和 时 变 啮 合 阻 尼, 两 者 的 关 系 cmi = 2ζ

kmi

mpimgi

mpi + mgi
,ζ 为阻尼比,初始取值为 0. 05,kmi 详细计

算过程见文献[11];δ1( t) 和 δ2( t) 分别表示第 1、2 对齿

轮啮合沿压力线上的弯曲变形位移;f( t) 表示尺侧间隙

非线性函数,如式(4) 所示。

f( t) =
δ( t) - b l, δ( t) > b l

0, δ( t) ≤ b l

δ( t) + b l, δ( t) < - b l

ì

î

í

ïï

ïï

(4)

式中: b l 表示为单边齿侧间隙,取值为 0. 1
 

mm。 第 1、
2 对齿轮相对位移可以表示为如式(5)和(6)所示。

δ1( t) = (Rbp1θp1 - Rbg1θg1) + (x2 - x1)sin(α0 + β1) +
(y1 - y2)cos(α0 + β1) - e1( t) (5)

δ2( t) = (Rbp2θp2 - Rbg2θg2) + (x2 - x3)sin(α0 + β2) +
(y3 - y2)cos(α0 + β2) - e2( t) (6)
式中: Rbpi 和 Rbgi( i = 1,

 

2) 是第 i对齿轮的主动和从动轮

的基圆半径;e( t) 表示传递误差函数,主要由偏心和齿廓

误差组合波形的表达式组成,如式(7) 所示。
e( t) = ee + ep
ee = eA1

sin(2πfp t + φp) + eA2
sin(2πfg t + φg)

ep = ∑
N

i = 1
A isin(2πifm t + φ)

ì

î

í

ï
ïï

ï
ï

(7)

式中: eA1
和 eA2

分别为主动、从动齿轮的偏心率;fp 和 fg 分
别表示为主动、从动齿轮的所在转轴的转频;fm 为啮合频

率;φp、φg 和 φ 分别表示为相应的相位差;A 表示为齿廓

误差的振幅。
上述建立的动力学模型只能预测正常状态下齿轮箱

振动响应,要想获得其他失效形式下振动数据,还需结合

失效机理模型。 磨损、缺齿、断齿等典型齿轮故障失效模

型已得到众多学者研究[12-13] ,主要是考虑不同故障形式

下齿轮时变啮合刚度、时变啮合阻尼、齿侧间隙等重要影

响因素变化来进行不同失效机理规律的表征。 将不同故

障形式下失效机理模型嵌入到建立的齿轮传动系统动力

学模型,获得具有故障预测功能的齿轮箱虚拟实体模型。
忽略故障齿轮与传感器之间传递路径的影响可能会

导致仿真信号与实测信号存在较大差异。 为了从实测正

常信号的功率谱中提取齿轮传动系统的传递函数,采用

自适应杂波分离算法进行频谱背景估计;然后,对估计的

频谱背景应用最小相位假设,可获得估计的传递函数,相
关理论原理见文献[14]。 将估计的传递函数 tf( t) 与虚

拟实体模型的原始仿真信号 x( t) 进行卷积, 即可获取调

整后的仿真信号,如式(8)所示。
x tf[ t] = x( t)∗tf( t) = IFFT[x( f) tf( f)] (8)

式中: t 和 f 分 别 表 示 时、 频 域; ∗ 表 示 卷 积 运 算;
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IFFT[·] 为逆傅里叶变换。
1. 2　 物理实体与虚拟实体模型交互

　 　 动力学建模过程中初始参数的设置更多依赖于经验,
然而,实际装配工艺和服役工况会对齿轮箱性能产生影

响,降低虚拟模型保真度[10] 。 因此,为了提高孪生与实测

数据的一致性,以实测正常信号为基准,建立了基于余弦

相似度的物理实体和虚拟实体模型交互机制。 余弦相似

度被用于评估孪生信号与实测信号的差异,能有效反映孪

生模型的保真度高低,其数学表达式如式(9)所示。

R(XD,XR) =
XD·XR

‖XD‖ × ‖XR‖
(9)

式中: XD 和 XR 分别表示同一工况正常状态下的孪生与

实测信号。
余弦相似度值越大,表明孪生仿真信号与实测信号

越相似。 基于此,建立的目标函数如式(10)所示。
f1(P) = 1 - R(X t

D,X t
R)

f2(P) = 1 - R(X f
D,X f

R){ (10)

min:[ f1(P),f2(P)]
s. t. : ∀p i ∈ P,L(p i) ≤ p i ≤ U(p i){ (11)

式中: P表示待优化的参数向量;L(·) 和U(·) 分别表示

左、右取值区间;上角标 t 和 f 分别表示时域波形和傅里

叶变换后的频谱。
在求解建立的目标函数最优解时,引入了多目标蚱

蜢优化算法[15] 。 该算法具有求解效率高、收敛速度快等

优点,是一种元启发式仿生优化算法。 指标 f1 和 f2 分别

表征孪生与实测信号的时域波形相似度和频域中啮合频

率及其谐波的幅值相似度。

2　 提出的小波注意力迁移故障诊断网络

2. 1　 物理实体与虚拟实体模型交互

　 　 经典的智能故障诊断方法受限于卷积神经网络及其

变体的“黑盒” 属性,特征提取过程可解释性较差,制约

了模型性能的进一步提升。 小波变换作为一种多分辨率

信号分析方法,不仅具有优异的非平稳信号分解能力,还
具有完备的理论支撑。 因此,将离散小波变换( discrete

 

wavelet
 

transform,
 

DWT)嵌入到卷积神经网络结构中进

行所提方法的特征提取网络结构的设计,增强模型的局

部可解释性,进一步提高故障特征提取能力。 DWT 采用

高通和低通滤波器组将信号分解成高频系数和低频系数

近似值,如式(12)所示。

x j,L[n] = ∑
K-1

k = 0
x j -1,L[2n - k]g[k]

x j,H[n] = ∑
K-1

k = 0
x j -1,L[2n - k]h[k]

ì

î

í

ï
ï

ï
ï

(12)

式中: g[n] 和 h[n] 分别表示低通和高通滤波器;xL 和 xH

分别为原始信号的低频和高频系数近似值。
结合 DWT 和通道注意力机制,提出的小波注意力机

制( wavelet
 

attention
 

mechanism,
 

WAM)模块结构示意图

如图 3 所示。 首先,假设输入的特征图 X in ∈ RC×L 的通道

为 C、长度为 L,根据给定的小波基函数 haar[16] ,通过

式(12)对每个通道的特征信号进行 DWT 分解,可获得

高频和低频分量的特征图,如图 3 所示。 由于小波分解

尺度为一级,因此高、低频分量特征图的长度变为 L / 2。
为了使提出的网络模型充分学习信号的低频和高频特

征,将高频和低频特征图按照通道方向进行拼接,获得分

解后的融合特征图 Xmid ∈ R2C×L / 2。

图 3　 WAM 模块结构

Fig. 3　 Diagram
 

of
 

the
 

WAM
 

module
 

architecture

经 DWT 层分解后获得的融合特征不可避免地存在

冗余信息,影响网络模型的分类性能。 为了提高所提网

络模型动态捕捉小波域特征有用频段信息、抑制无效特

征的能力,通道注意力机制被引入到 DWT 层后进行强相

关故障特征学习,如图 3 所示。 首先,将融合特征图 Xmid

采用平均池化和最大池化的操作来进行局部和全局信息

聚合,并引入可学习参数 α 和 β 来平衡局部和全部信息,
数学表达式为:

d = α·fAvg(Xmid) + β·fMax(Xmid) (13)
式中: d为通道向量;fAvg(·) 和 fMax(·) 分别表示平均池化

和最大池化运算。
其次,采用两个全连接(fully

 

connected,
 

FC)层进行非

线性变换,以学习到不同通道的重要性。 其中,第 1 个全

连接层(FC1)将通道表示向量压缩为维度为 (2C / r) × 1的

隐藏层向量,r 为通道降维率,取值为 16,并采用线性整流

函数(ReLU)作为非线性变换;第 2 个全连接层(FC2 )将隐

藏层向量恢复为原始维度为 2C × 1 的权重向量,激活函

数为 Sigmoid 函数。
ω = Sigmoid(FC2(ReLU(FC1(d)))) (14)

式中: ω 为通道特征的重要性权重。
最后,将融合特征图进行通道加权与残差连接运算,

获得输出特征图 Xout , 即:
Xout = Xmid + ω·Xmid (15)
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2. 2　 联合子域自适应

　 　 由于孪生数据与实测数据特征分布存在差异,导致

直接采用孪生数据集训练的网络模型泛化能力差,难以

直接应用于物理实体模型故障诊断中。 因此,需采用基

于领域自适应的度量策略来匹配孪生与实测数据的特征

分布差异。 最大均值差异( maximum
 

mean
 

discrepancy,
 

MMD)作为一种广泛使用的域适应度量准则,数学表达

式如式(16)所示。

M = MMD(XS,XT) =

1
NS

∑
NS

i = 1
ϕ(XT

i ) - 1
NT

∑
NT

i = 1
ϕ(XT

i )
2

H
(16)

式中: XS 和 XT 分别表示源域与目标域数据;NS 和 NT 定

义为相应的样本数据量;H 为再生核希尔伯特空间;ϕ:
XS,XT → H 是高斯核函数。

MMD 只考虑了不同域的边缘分布差异,忽略条件分

布差异,迁移能力有限。 针对该问题,考虑不同域的相同

子类故障之间的相关性,Zhu 等[17] 提出了局部最大均值

差异(local
 

MMD,
 

LMMD):

L = LMMD(XS,XT) =

1
Cm

∑
Cm

c = 1
∑
NS

i = 1
ωsc

i ϕ(XS
i ) - ∑

NT

j = 1
ω tc

j ϕ(XT
j )

2

H
(17)

式中: Cm 表示故障类别数;ωsc
i 和 ω tc

j 分别表示源域与目

标域样本属于第 c 类故障的权重;对于源域样本,使用真

实标签进行概率计算,对于目标域标签,采用网络预测的

伪标签进行计算。 然而,直接使用网络预测的概率可能

会由于伪标签预测的潜在不准确而导致子域适配能力的

下降。 为了解决该问题,基于信息熵理论,提出了动态局

部领域自适应度量准则( dynamic
 

LMMD,
 

DLMMD),如
式(18)所示。

DL = DLMMD(XS,XT) =

1
Cm

∑
Cm

c = 1
∑
NS

i = 1
ωsc

i ϕ(XS
i ) - ∑

NT

j = 1
h(XT

j )ω tc
j ϕ(XT

j )
2

H
(18)

h(X) = - 1

∑
Cm

c = 1
p( ŷtc)logp( ŷtc)

(19)

式中: p(·) 表示网络模型分类器预测的目标域伪标签 ŷt

的概率分布。 当模型预测中出现不确定性,导致所有类

别的概率分布相似时,其信息熵值就越高,信息熵倒数值

h(·) 越小,模型被赋予更小的权重。
考虑孪生和实测数据的边缘及条件分布对齐,结合

MMD 和 DLMMD 领域自适应策略,提出了联合子域自适

应准则,数学表达式为:

JD = μ M + (1 - μ) DL (20)
式中: μ 表示动态平衡因子,μ = M / ( M + DL)。

2. 3　 所提小波注意力迁移故障诊断网络模型

　 　 为了更好提取孪生与实测数据的可迁移故障特征,
将提出的 WAM 模块嵌入到卷积神经网络结构中,设计

了齿轮箱故障诊断 WATN 网络。 同时,分类层的最后一

个全连接层被选择作为自适应层,采用提出的联合子域

自适应准则进行孪生与实测数据特征差异度量,所提方

法 WATN 的网络结构图如图 4 所示。

图 4　 提出的 WATN 结构

Fig. 4　 Diagram
 

of
 

the
 

proposed
 

WATN
 

structure

WATN 网络结构主要由提出的 WAM 模块交替嵌入

卷积神经网络组成,具体参数说明如表 1 所示,其中每个

卷积层后均进行了批归一化( batch
 

normalization,
 

BN)和

线性整流函数 ( rectified
 

linear
 

unit,
 

ReLU) 激活操作,
WAM 模块后的丢弃操作(Dropout)用于抑制网络训练过

拟合。 WATN 的分类层由两个全连接层组成,其中 ReLU
激活和丢弃操作应用在第 1 个全连接层后。

对于源域数据集的监督训练,交叉熵损失函数 LCE

被用于计算其分类损失。

C = 1
NS

∑
NS

i = 1
LCE(g(XS

i ),yS
i ) (21)

式中: g(X) 为训练网络模型的预测输出;yS 为源域真实

标签。
考虑源域分类损失、源域与目标域联合子域自适应

损失,所提方法的总的优化目标函数为:
T = C + ξ JD (22)

式中: ξ 表示权重超参数。

3　 齿轮箱故障诊断试验验证

3. 1　 物理齿轮箱试验台描述及工况设置

　 　 为了验证所提方法的有效性,采用实验室动力传动

系统试验台进行试验验证。 试验台主要由电机、速度控

制器、一级行星齿轮箱、两级平行轴齿轮箱、磁粉制动器

等组成,如图 5 所示。
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表 1　 所提模型 WATN 网络结构参数说明

Table
 

1　 Description
 

of
 

the
 

WATN
 

network
 

structure
 

parameters
 

of
 

the
 

proposed
 

model

层类型 核尺寸 步长 其他运算 输出维度

输入 (4
 

096,
 

1)　

卷积层 1 3 1 BN+ReLU (4
 

094,
 

16)

WAM 层 1 Dropout
 

(0. 1) (2
 

047,
 

32)

卷积层 2 3 1 BN+ReLU (2
 

045,
 

32)

WAM 层 2 Dropout
 

(0. 1) (1
 

023,
 

64)

卷积层 3 3 1 BN+ReLU (1
 

021,
 

64)

WAM 层 3 Dropout
 

(0. 1) (511,
 

128)

卷积层 4 3 1 BN+ReLU (509,
 

128)

WAM 层 4 Dropout
 

(0. 1) (255,
 

256)

卷积层 5 3 1 BN+ReLU (253,
 

256)

自适应平均池化层 (1,
 

256)

全连接层 1
ReLU+

Dropout
 

(0. 3)
128

全连接层 2 4

图 5　 齿轮故障模拟试验装置

Fig. 5　 Gear
 

fault
 

simulation
 

test
 

device

　 　 加速度传感器被安装在平行轴齿轮箱中间轴的轴承

座的垂直方向上,信号采样频率为 50
 

kHz。 正常及模拟

故障的齿轮被安装在平行齿轮箱的中间轴上,故障齿轮

齿数为 36,支撑传动轴的轴承型号为 ER-16K。 此外,行
星齿轮箱的减速比为 4. 57。 平行轴齿轮箱结构参数如

表 2 所示。 支撑轴承的刚度为 8. 5×107
 

N / m,阻尼系数

为 2. 1×104
 

N·s / m。
通过改变速度控制器的输入转速和磁粉制动器的控

制电压进行变工况环境模拟,总共模拟了 4 种变工况环

境,如表 3 所示。
此外,除了正常运行状态(normal

 

condition,
 

NO),还
进行了 3 种不同故障的模拟, 即断齿 ( chipped

 

fault,
 

CF)、磨损(wear
 

fault,
 

WF)以及缺齿( missing
 

fault,
 

MF)
故障,对应的图片如图 6 所示。

表 2　 二级平行齿轮箱结构参数

Table
 

2　 Two-stage
 

parallel
 

gearbox
 

structural
 

parameters

齿轮参数 主动轮 p1 从动轮 g1 主动轮 p2 从动轮 g2

模数 / mm 1. 5 1. 5 1. 5 1. 5

齿数 100 29 36 90

压力角 / ( °) 20 20 20 20

齿宽 / mm 15 15 15 15

基圆半径 / mm 70. 5 20. 4 25. 4 63. 4

质量 / kg 2. 071 0. 371 0. 465 1. 676

转动惯量 / (kg·m2 ) 4. 2×10-3 4. 0×10-5 9. 6×10-5 2. 8×10-5

表 3　 不同工况参数设置

Table
 

3　 Parameter
 

settings
 

for
 

different
 

working
 

conditions

工况参数 工况 W1 工况 W2 工况 W3 工况 W4

转速 / Hz 25 30 35 35

电压 / V 8 4 4 0

图 6　 不同故障模式齿轮图片

Fig. 6　 Pictures
 

of
 

different
 

gear
 

failure
 

modes

3. 2　 数字孪生模型验证及孪生数据仿真

　 　 采用龙格库塔法求解 3. 1 节建立的两级平行齿轮传

动系统动力学方程组,其中求解函数采用 MATLAB 软件

中的 ODE45,时间步长设置为 5. 0×10-6。 然后,将求解

得到的正常振动响应信号与传递函数进行卷积运算,获
得考虑信号传输路径的正常仿真信号。 再以实测正常信

号作为基准,采用多目标蚱蜢优化算法同时优化传递误

差函数的振幅及相位、输入轴转频、阻尼比系数等敏感参

数,并求解敏感参数向量的最优值。 为了量化评价孪生

与实测数据的相似性,给出了 4 种工况下信号的时域、频
域余弦相似度值,如表 4 所示。

表 4　 不同工况下孪生与实测正常数据的余弦相似度

Table
 

4　 Cosine
 

similarity
 

between
 

twin
 

and
 

measured
 

normal
 

data
 

under
 

different
 

working
 

conditions

余弦相似度 工况 W1 工况 W2 工况 W3 工况 W4

时域 0. 739
 

0 0. 683
 

6 0. 662
 

4 0. 888
 

1

频域 0. 884
 

0 0. 768
 

4 0. 838
 

5 0. 739
 

6
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　 　 由表 4 可知,孪生与实测数据的时、频域余弦相似度

值分别在 0. 66 和 0. 73 以上,表明虚拟实体模型与物理

实体模型存在较强的正相关性。 为了更直观的比较孪生

与实测数据的相似性,随机给出了 W1 和 W3 工况下的

孪生模型正常仿真数据与对应滤波后的实测数据的时、
频域对比图,如图 7 所示。

图 7　 不同工况下的孪生模型正常数据与实测数据比较

Fig. 7　 Comparison
 

of
 

normal
 

data
 

and
 

measured
 

data
 

of
 

the
 

twin
 

model
 

under
 

different
 

working
 

conditions

由图 7 中不同工况的时域波形图可知,孪生与实测

数据在振动幅值和周期角度方面较为一致,变化规律基

本相同。 在频域图中,可以清晰地发现齿对啮合的基频

及其倍频一致性较好,有效地反映了齿对的啮合特性。
以上分析进一步表明构建的动力学模型具有较好的保

真度。
将高保真动力学模型分别与 CF、WF、MF 的齿轮故

障机理模型进行融合,生成不同故障种类下的仿真数据

集。 随机选择 W3 工况下 WF 模式的孪生故障信号时域

波形和频谱进行分析,如图 8 所示。
由图 8(a)可以明显发现,故障时域信号存在周期性

的冲击成分,间隔时间约为中间轴转频的倒数;图 8( b)
频谱图中除了啮合频率及其谐波频率,还可发现以故障

齿轮旋转频率为间隔的啮合调制边频带。 这些现象符合

齿轮分布式型故障模式的振动响应机理。 因此,建立的

数字孪生模型能有效地生成可靠的孪生故障数据,可用

于智能诊断模型训练。
3. 3　 迁移故障诊断对比方法及实验设置

　 　 为了说明所提模型的有效性与优越性,离散小波神

经网络(discrete
 

wavelet
 

neural
 

network,
 

DWNN)、离散小

波注 意 力 神 经 网 络 ( discrete
 

wavelet
 

attention
 

neural
 

network,
 

DWANN )、 深 度 域 自 适 网 络 ( deep
 

domain
 

confusion,
 

DDC)、领域对抗神经网络( domain
 

adversarial
 

图 8　 W3 工况下 WF 模式的孪生故障数据时频图

Fig. 8　 Time-frequency
 

diagram
 

of
 

twin
 

fault
 

data
 

in
 

WF
 

mode
 

under
 

W3
 

condition

neural
 

network,
 

DANN )、 深度子域自适应网络 ( deep
 

subdomain
 

adaptation
 

network,
 

DSAN)被选择进行对比实

验验证。 其中,DWANN 网络结构与所提模型 WATN 主

干结构完全一致,只是未进行领域自适应,用于说明孪生

向实测数据迁移的必要性;DWNN 是在 DWANN 网络结

构的基础上去除通道注意力模块;DDC 是在 DWANN 网

络基础上,采用 MMD 进行孪生与实测差异的度量[18] ;
DANN 采用领域对抗域自适应策略[19] 来缩小不同领域

的分布差异; DSAN 是将 DDC 网络中 MMD 替换为

LMMD 度量准则[17] ,其余保持不变。
在实验数据源域设置方面,齿轮每种健康状态下含

标签的孪生样本为 200 个,每个样本包含 4
 

096 个点。 目

标域设置方面,每种健康状态包含 300 个不含标签的样

本,其中 200 个样本用于训练,剩下的 100 个样本用于测

试。 为了降低模型训练的随机性影响,对每种故障诊断

任务都重复试验 7 次,取平均值。 所有模型训练迭代次

数保持一致,最大迭代次数被设置为 2
 

000,批量大小被

设置为 32。 采用 Adam 梯度优化方法,学习率设置为

1. 0×10-4,正则化系数设置为 1. 0×10-5。 为抑制噪声对

网络训练的影响,超参 ξ 设置与 DANN 一样,随着训练次

数增加从 0 逐渐增加到 1。
3. 4　 迁移诊断对比结果分析

　 　 各个模型在 4 种工况下的孪生向实测数据迁移诊断

结果如表 5 所示。
由表 5 可知,所提模型 WATN 在 4 种迁移任务下均

获得最高的分类精度,平均分类精度为 98. 10% ,优于其

他对比模型。 未采用领域自适的 DWNN 和 DWANN 模

型分类性能较差, 平均分类精度分别为 43. 36% 和
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　 　 　 　 表 5　 各模型目标域测试集的分类精度

Table
 

5　 Classification
 

accuracy
 

of
 

each
 

model′s
 

target
 

domain
 

test
 

set
 

(% )

方法 DWNN DWANN DDC DANN DSAN WATN

W1 38. 32 41. 64 51. 42 61. 43 75. 00 97. 22

W2 25. 00 28. 39 67. 57 62. 20 75. 00 95. 42

W3 63. 82 75. 00 52. 42 74. 78 75. 00 100. 00

W4 46. 32 47. 28 99. 22 95. 46 99. 75 99. 77

平均精度 43. 36 48. 07 67. 65 73. 46 81. 18 98. 10

48. 07% 。 一方面说明孪生故障数据向实测数据迁移的

必要性,另一方面说明通道注意力机具有动态聚焦有用

频域故障特征的能力,提高模型泛化性。 在迁移学习对

比模型中,只考虑边缘分布差异的 DDC 平均分类精度最

低,为 67. 65% 。 基于对抗策略的 DANN 模型在网络训练

过程中存在收敛困难的风险,平均分类精度为 73. 46% 。
DSAN 模型考虑了不同域的故障子类信息,迁移能力有

所提高,平均分类精度为 81. 18% ,但是,直接使用网络预

测的伪标签存在潜在的不确定性,导致子域适配能力的

不足, 迁移任 务 W1 ~ W3 上 平 均 分 类 精 度 仅 达 到

75. 00% 。 所提模型 WATN 通过联合子域度量准则优化

了孪生与实测数据的联合分布差异,迁移性能最优。 分

析结果证明了所提模型在数字孪生驱动的齿轮箱故障诊

断中有效性和优越性。
为了进一步说明所提模型的优越性,采用 t 分布随

机近邻嵌入(t-distributed
 

stochastic
 

neighbor
 

embedding,
 

t-
SNE)技术对 W1 任务下不同方法学习到的特征进行可

视化分析,如图 9 所示,其中“S”为源域特征,“ T”为目标

域特征。

图 9　 不同模型在 W1 任务中特征可视化图

Fig. 9　 Feature
 

visualization
 

of
 

different
 

models
 

under
 

W1
 

task

由图 9 可知,所提方法 WATN 在不同域的相同子类

故障特征分布较为紧凑,类间故障特征分布较为稀疏,特
征聚类效果较好。 其余对比模型存在不同程度的特征混

叠、误分类现象,聚类效果不理想。
3. 5　 选择的小波基有效性分析

　 　 为了验证所提方法中 WAM 层小波基选择的有效

性,随机选择 W1 工况进行实验验证分析。 较为常用的

小波基函数 db8、db16、dmey、sym8、coif8 被选择作为比较

对象,不同小波基函数下所提方法 WATN 的平均分类精

度结果如图 10 所示。

图 10　 小波基有效性分析结果展示(W1 工况)
Fig. 10　 Results

 

of
 

wavelet
 

basis
 

validity
 

analysis
 

(W1
 

condition)

由图 10 可知,采用不同的小波基函数,WATN 获得

了不同的诊断效果;db 系列小波函数受消失矩的影响较

大,db16 小波基下 WATN 诊断效果较差;在所有对比的

小波基函数中,采用具有正交性和对称性的 haar 小波基

的 WATN 获取了最好的分类精度。 以上分析证明了

WAM 层中小波基 haar 在提取齿轮箱振动信号迁移故障

特征方面的有效性。

4　 结　 　 论

　 　 本研究提出了一种数字孪生驱动小波注意力迁移网

络的齿轮箱故障诊断方法,旨在解决现有仿真数据驱动

的故障诊断方法存在动力学模型响应与实测数据分布差

异较大、模型泛化性差的问题。 主要结论为:建立了一个

基于实测正常数据修正的二级平行圆柱齿轮传动系统高

保真虚拟模型,结合齿轮失效机理模型能有效地生成丰

富的孪生故障数据集;设计的小波注意力特征提取网络

在小波域中学习域不变特征,并从通道的维度上动态聚

焦强相关故障特征,提升了网络泛化性;与经典的迁移学

习模型 DDC、DANN 和 DSAN 进行对比分析,验证了所提

方法 WATN 具有较好的分类精度和聚类效果。 此外,为
了应对实际工业场景中可能出现的噪声干扰强、故障模

式多样性等问题,未来的工作将进一步致力于具有降噪

功能的可解释深度网络构建、通用领域自适应算法开发

等研究课题。
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