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摘　 要:航天器机电设备因其部件高耦合性及故障级联隐蔽性,对故障诊断的推理效率与可解释性提出了严苛要求。 在文本知识

驱动的智能故障诊断中,针对传统知识图谱(KG)构建成本高、通用大语言模型(LLM)对特定领域诊断知识专业性不足、检索增强

生成(RAG)技术关联推理能力有限的问题,故提出一种本体约束驱动的图谱 RAG 故障诊断方法。 一方面,构建了 4 层故障诊断

本体框架,通过本体注入的提示学习实现 LLM 对多源诊断知识的规范化抽取,并基于字符比较与嵌入模型的双层相似度校准实

现知识图谱的动态集成更新,自主构建一体化的诊断知识图谱基座。 另一方面,基于 LLM 与词向量联合的实体模糊检索,结合幂

编码的图谱即时蒸馏方法,在结合图谱节点可视化故障传播路径的同时,针对性地融合故障子图结构特征与上下文知识,提升通

用 LLM 故障溯源与维修策略生成的逻辑完备性。 以太阳翼驱动机构(SADA)诊断文本、FMEA 表格为验证对象,通过本体注入的

提示词,借助通用 LLM 抽取诊断知识图谱,进一步结合可视化图谱进行诊断问答,结果表明,相比于传统 RAG 方法,结合故障子图

的图谱 RAG 方法在智能故障诊断问答中的关键词 F1 分数提高了 70. 88% ,语义相似度提高了 11. 60% ,其回答的准确性、可解释

性均优于仅 LLM 方法与 RAG 方法,为航天器机电设备的智能化故障诊断提供了理论支撑与技术路径。
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Abstract:The
 

high
 

coupling
 

of
 

components
 

and
 

the
 

concealed
 

nature
 

of
 

cascading
 

faults
 

in
 

spacecraft
 

electromechanical
 

devices
 

impose
 

stringent
 

demands
 

on
 

the
 

reasoning
 

efficiency
 

and
 

interpretability
 

of
 

fault
 

diagnosis
 

systems.
 

To
 

address
 

the
 

challenges
 

of
 

high
 

construction
 

costs
 

associated
 

with
 

traditional
 

knowledge
 

graphs
 

( KG),
 

the
 

lack
 

of
 

domain-specific
 

expertise
 

in
 

general-purpose
 

large
 

language
 

models
 

( LLM),
 

and
 

the
 

insufficient
 

associative
 

reasoning
 

capability
 

of
 

retrieval-augmented
 

generation
 

( RAG)
 

in
 

textual
 

knowledge-driven
 

intelligent
 

fault
 

diagnosis,
 

this
 

study
 

proposes
 

an
 

ontology-constrained
 

knowledge
 

graph-RAG
 

fault
 

diagnosis
 

method.
 

Firstly,
 

a
 

four-layer
 

fault
 

diagnosis
 

ontology
 

framework
 

is
 

constructed.
 

Utilizing
 

ontology-injected
 

prompt
 

learning,
 

the
 

LLM
 

achieves
 

standardized
 

extraction
 

of
 

multi-source
 

diagnostic
 

knowledge.
 

A
 

dynamic
 

integration
 

and
 

updating
 

mechanism
 

for
 

the
 

knowledge
 

graph,
 

based
 

on
 

dual-layer
 

similarity
 

calibration
 

involving
 

character
 

comparison
 

and
 

an
 

embedding
 

model,
 

is
 

implemented
 

to
 

autonomously
 

build
 

an
 

integrated
 

diagnostic
 

knowledge
 

graph
 

base.
 

Secondly,
 

leveraging
 

entity
 

fuzzy
 

retrieval
 

that
 

combines
 

LLM
 

and
 

word
 

embeddings,
 

along
 

with
 

a
 

power-encoding-based
 

instant
 

knowledge
 

graph
 

distillation
 

method,
 

the
 

approach
 

incorporates
 

fault
 

subgraph
 

structural
 

features
 

and
 

contextual
 

knowledge
 

while
 

visualizing
 

fault
 

propagation
 

paths
 

via
 

graph
 

nodes.
 

This
 

significantly
 

enhances
 

the
 

logical
 

completeness
 

of
 

fault
 

root
 

cause
 

analysis
 

and
 

maintenance
 

strategy
 

generation
 

by
 

the
 

general-purpose
 

LLM.
 

Validation
 

using
 

diagnostic
 

texts
 

and
 

FMEA
 

tables
 

of
 

the
 

solar
 

array
 

drive
 

assembly
 

(SADA)
 

shows
 

that,
 

compared
 

with
 

traditional
 

RAG
 

methods,
 

the
 

proposed
 

KG-
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RAG
 

method
 

combined
 

with
 

fault
 

subgraphs
 

improves
 

the
 

keyword
 

F1-score
 

by
 

70. 88%
 

and
 

semantic
 

similarity
 

by
 

11. 60%
 

in
 

intelligent
 

diagnostic
 

Q&A.
 

The
 

results
 

show
 

superior
 

accuracy
 

and
 

interpretability
 

over
 

using
 

LLM
 

or
 

RAG
 

alone,
 

providing
 

substantial
 

theoretical
 

support
 

and
 

a
 

technical
 

pathway
 

for
 

intelligent
 

fault
 

diagnosis
 

of
 

spacecraft
 

electromechanical
 

equipment.
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0　 引　 　 言

　 　 航天器机电设备(如姿态控制力矩陀螺、太阳翼驱动

机构(solar
 

array
 

drive
 

assembly,
 

SADA) 等) 作为航天器

在轨能量转换与运动控制的核心执行单元,其可靠性直

接决定航天器全生命周期任务成功率。 太空中严苛的

力、热空间环境导致这类设备的故障诊断面临特殊挑战:
其内部能量转换与机械运动的强耦合特性,使得故障传

播具有高度隐蔽性和级联性———如润滑失效可能引发轴

承卡滞,进而导致机构锁死甚至姿态失控。 然而,当前航

天器机电设备在设计与维护阶段产出的可靠性分析文本

资料繁多、文档风格多样,传统依赖人工翻阅资料的分析

策略难以快速满足航天器复杂的故障诊断任务,亟需构

建一种知识管理与故障诊断推理方法以实现航天器的智

能化管理[1] 。
当前文本知识驱动的智能故障诊断领域主要存在

2 种技术路线:基于知识图谱(knowledge
 

graph,
 

KG)的方

法与基于检索增强生成[2](retrieval-augmented
 

generation,
 

RAG)的方法。
面向特定知识领域,基于知识图谱的故障诊断通过

本体框架结合特定模型完成实体与关系的抽取[3-4] ,构建

起诊断知识图谱以满足可溯源、解释的智能故障查询与

问答需求。 张鑫鑫等[5] 通过关联固化卫星系统多维专家

知识,并综合运用本体建模与多种知识抽取模型构建了

卫星故障领域知识图谱,辅助卫星故障诊断。 许驹雄

等[6] 在柴油发动机故障领域,通过本体建模,使用 BERT
和 BiLSTM-CRF 模型抽取实体及关系并构建了图谱诊断

原型系统。 杨同智等[7] 将航天器供配电图、故障预案、故
障时序动作等多维度专家知识关联,构建航天器多学科

故障诊断图谱,并依靠图谱的因果推理辅助故障诊断,提
升航天器故障诊断效率、可解释性与处置能力。 上述方

法主要关注多源知识的结构化表达,同时依靠图谱的故

障传播可视化图结构保证了故障诊断结论的可解释性。
然而,传统的知识图谱构建方法需要基于标注语料学习

或人工提取,构建成本较大;此外,面对航天器机电设备

故障机理强耦合性特点,基于静态查询的知识图谱推理

缺乏对级联故障传播路径的动态建模能力,难以满足复

杂故障诊断的深度推理需求。
基于 RAG 的故障诊断方法首先将故障诊断文本知

识切分后向量化存储构建诊断知识库,而后基于现场排

故人员的问询,通过余弦相似度匹配检索相关诊断文本,
最后连同用户的问询作为上下文一并给大语言模型

(large
 

language
 

model,
 

LLM),LLM 针对问询与上下文语

段生成诊断结果[8] ,降低了排故人员对多源海量健康知

识的认知诊断难度。 洪亮等[9] 以瓦斯超限煤矿安全隐患

知识为数据源,并将其切分与向量化后构建知识库,使用

词嵌入模型完成向量检索,建立了煤矿安全辅助决策智

能问答模型。 肖雪迪等[10] 以历史故障案例与故障知识

构建知识库,利用 LLM 的检索、理解与归纳能力建立了

故障定位问答交互系统。 江颉等[11] 引入 RAG 技术,利
用外部知识库和内部经验库提升了智能体渗透测试结果

的准确性和可靠性。 刘文婷等[12] 面向宽带网络设备广

泛分布且高度互联,故障根源难融合等问题,引入领域知

识库,利用 RAG 技术实现智能问答系统,辅助网络故障

的定位。 上述 RAG 技术通过利用外部知识,可在一定程

度减少 LLM 幻觉,增强知识推理决策过程的逻辑性与自

主性[13] 。 然而,面向来源广泛且故障级联传播明显的可

靠性文本资料,RAG 技术较难感知多源知识间关联关

系,在文本切分时易截断部分关联语义[14] ,导致检索匹

配到的文本内容与用户问询的相关性较低,严重限制了

诊断推理问答的深度与准确度。 因此,现有方法难以有

效应对航天器机电设备故障所具有的强隐蔽性和级联效

应,无法满足可解释性故障推理分析的高要求。
因此,面向航天器运维保障中高可靠性故障诊断业

务需求,本研究提出一种图谱 RAG 赋能的故障诊断方

法。 首先,利用本体注入的 LLM 提示学习,赋能知识图

谱技术,进而有效实现知识的挖掘与关联分析,并基于图

谱动态更新机制快速实现多源文档的高性能知识整合与

应用,构建规范化、关联可推理的故障诊断图谱知识库;
其次,通过知识图谱即时蒸馏方法与故障子图嵌入的

RAG 技术进一步联合,补充诊断回答的知识来源与全局

故障传播细节,增强故障推理结果的知识完整性、可解释

性与可溯源性。

1　 本体约束的图谱 RAG 故障诊断架构

　 　 本体是共享概念模型的、明确的、形式化规范说明,
它包含一组概念、关系以及它们之间约束的定义[15] 。 在

航天器机电设备的故障诊断中,本体建模能够形式化地
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定义知识空间,规范航天器机电设备知识之间的概念及

关系,有效实现多源健康知识的规范化整合,并支撑可解

释性诊断推理。
根据知识本体六元素[16] 表示法,同时考虑到航天器

机电设备的故障诊断业务场景主要集中在设备部件、部
件故障传播机理等方面,对知识中的实体类型及实体关

系的定义也应集中于上述方面。 首先针对实体类型构建

4 层故障诊断本体实体框架。
1)物理实体层:按设备分解结构如电机、轴系等核心

部件及其层级关系,对应“设备结构类”实体;
2)监测感知层:角度传感器、功率输出监视等与物理

实体的监测关系,对应“测点信号类”实体;
3)故障演化层:表征“故障原因”、“故障现象”之间

的传播演化关系,如建立:机构不能转动→太阳翼驱动机

构输出轴不转动…→影响太阳翼驱动机构能源获取等故

障演化关系,对应“故障模式类”实体;
4)维修策略层:映射故障模式与工艺过程控制,如电

阻导通测试,控制多余物等应对措施,对应“ 应对措施

类”实体。
进一步,对航天器机电设备健康知识本体中实体类

型的说明如表 1 所示。

表 1　 面向航天器机电设备故障诊断的本体实体类型定义

Table
 

1　 Definition
 

of
 

ontology
 

entity
 

types
 

for
 

spacecraft
 

electromechanical
 

device
 

fault
 

diagnosis

实体类型 主要属性 说明 示例

设备结构类
系统名称、
部件名称等

系统组成、功能

单元 / 部件等

功率导电环、旋转

变压器…

测点信号类
信号名称、
信号状态等

与产品检测或排

故相关的传感信

号等

旋变角度数据、电
池阵功率输出…

故障模式类
故障原因、
故障现象

所有与故障相关

的表征

触点开路、电噪声

增加…

应对措施类
工具清单、
维修操作等

针对故障现象或

故障原因作出的

应对措施

切换备份、严格控

制多余物…

　 　 在上述实体类型定义的基础上,构建故障诊断知识

本体(fault
 

diagnosis
 

ontology,FDO)为:
FDO = < C,AC,R,AR,I > (1)

式中: C 为不同概念的集合;AC 为概念属性的集合;R 为

不同关系的集合;AR 为关系属性的集合;I 为概念实例集

合。 其中不同概念集合 C 为:
C = {C1,C2,C3,C4} (2)

式中: C1 为设备结构类本体;C2 为测点信号类本体;C3 为

故障模式类本体;C4 为应对措施类本体。 FDO 中不同本

体概念间的关系概念集合 R 为:
R = {R1,R2,R3,R4,R5} (3)

式中: R1 为故障模式位于某个设备结构处,R1 = R位于

(C3,C1);R2 为测点监测某处设备结构,R2 = R监测(C2,
C1);R3 为故障模式导致某种故障模式出现,R3 = R导致

(C3,C3);R4 为针对故障模式采取应对措施建议,R4 =
R建议(C4,C3);R5 为设备部件之间的归属关系,R5 = R属于

(C1,C1)。
各实体类型及其之间的相互关系如图 1 所示。

图 1　 故障诊断知识本体的构建

Fig. 1　 Construction
 

of
 

fault
 

diagnosis
 

knowledge
 

ontology

基于上述本体约束,构建如图 2 所示的图谱 RAG
架构。

图 2　 本体约束的图谱 RAG 架构

Fig. 2　 Ontology-constrained
 

knowledge
 

graph-RAG
 

architecture
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首先,面向航天器机电设备的可解释性故障诊断业

务构建本体,约束多源健康知识,通过领域本体注入的提

示学习实现 LLM 的语义校准,解决知识抽取的可靠性问

题,并基于图谱的动态更新机制形成本体约束下的全局

知识图谱,实现健康知识的挖掘与集成;其次,通过 LLM
与词向量联合模糊检索定位故障实体,并以故障实体为

中心,利用幂编码的子图即时蒸馏方法,结合本体关系传

播路径,实现故障子图的快速精准定位与可视化验证;最
后,为进一步降低维修人员的故障推理负担,开发基于子

图 RAG 推理的智能故障问答方法,融合多跳关联与多维

度上下文知识,形成人机协同闭环,提供更为全面细致的

故障诊断策略,提升复杂故障的可溯源与可解释能力,降
低知识检索的认知负荷。

2　 LLM 赋能的故障知识挖掘与集成方法

　 　 知识挖掘主要指从自然语段到实体知识的挖掘过

程。 传统基于正则匹配的实体挖掘只能作用于特定的文

本结构,而无监督学习等途径通过识别各类较短语义的

名词挖掘实体,易导致知识文本被碎片化拆解,且精确度

有限,降低知识图谱的可用性[17] 。
因此,针对航天器机电设备多源知识语义表述的多

样性,设计基于 LLM 的知识挖掘方法。
如图 3 所示,该方法包含知识抽取与图谱集成两大核

心模块:1)将规范多源航天器机电设备诊断知识的本体约

束注入到 LLM 的提示词中,规范化抽取多源知识中的实体

及关系;2)将抽取出的碎片分散化实体及其关系通过多维

度语义相似性比较实现知识的结构化整合集成。

图 3　 LLM 赋能的故障知识挖掘与集成方法

Fig. 3　 LLM-enabled
 

fault
 

knowledge
 

mining
 

and
 

integration
 

method

2. 1　 本体注入的提示学习故障知识挖掘方法

　 　 通过创建与精炼提示,将本体设计注入到 LLM
中,并构造实体与关系挖掘模版,实现 LLM 在航天器

机电设备故障诊断领域的情境学习与知识的系统化

抽取。
所说提示,是指添加到 LLM 输入中的信息,通过提

示,可以激活模型部分特定参数,提高其面向特定任务的

泛化能力。 针对离散提示[18] 而言,可通过人工设计离散

提示激发大语言模型的能力,包括上下文学习[19] 和思维

链[20] 。 通过少量上下文学习,LLM 可以直接完成自然语

言处理任务而无需更新任何模型参数;而思维链则是通

过零样本或者小样本上下文提示,细化指令或中间推理

步骤以提升 LLM 的复杂推理能力。
充分利用上述“明确指令”、“思维链”、“格式化输入

输出”等原则,在本体约束的框架下,设计的提示词模

板为:
1)指令

给定一个航天器机电设备故障诊断相关的文本文

档,首先确定文本中本体框架下的所有实体。 接下来,根
据本体框架中实体之间的关系,约束并配对实体之间的

所有关系。
2)本体框架

本体框架的实体类型包括设备结构、故障模式(故障

原因,故障现象)、测点信号、应对措施,实体间关系包括

位于、属于、监测、导致、建议。
3)思维链步骤 1
进行实体构建,识别所有实体(每个实体可以是一个

完整事件),对于每个已识别的实体,提取实体名称、类
别、上下文、描述等信息,并将每个实体格式化为特定的

字典形式。
4)思维链步骤 2
进行关系构建,对于 3) 中识别的实体,根据实体间

关系列表判定实体间的关系,提取源实体、目标实体、关
系类别、关系描述、关系强度等信息,并将每个关系格式

化为特定的字典形式。 最后,以中文、列表套字典的形

式,返回思维链步骤 1 和 2 中确定的所有实体和实体

关系。
5)输出样例

{" nodes" : [{ " name" : < entity _ name >," class" : <
entity_class>," context" :<entity_context>," description" :<
entity_description>},…]," edges" :[{ " source" :<source_
entity>," target" :<target_entity >," class" :<relation_class
>," context " : < relation _ context >," description " : <
relationship_description>," strength" :<relationship_strength
>},…]}

上述基于提示学习的实体挖掘方法专注于高裕度知
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识的实体挖掘,可抽取出本体框架下实体类型对应的完

备语义表达,每个实体均是一个完整“事件”,可有效避

免“事件”内部“实体”再次被切分抽取带来的图谱复杂

性大幅度提升的问题。 同时在知识挖掘中保留实体的上

下文信息便于知识溯源。
2. 2　 双层相似度检测的图谱动态集成方法

　 　 为实现不同知识来源的整合、外推与迭代,为航天

器机电设备提供规范精简的知识基础,针对不同知识

源提取的局部图谱之间存在相似表达实体的问题,提
出双层相似度检测的图谱动态集成方法向全局图谱增

量融合。
一方面,在图谱动态更新的过程中,首先利用基于字

符串相似性比较的方法快速实现对简单相似实体的初次

融合,而后对剩余实体基于语义指纹向量的余弦相似度

比较实现二次融合,兼顾实体融合的效率与准确性。 另

一方面,在局部图谱向全局图谱合并的过程中,融合相似

实体的同时需保留被融合实体的边关系以保持图谱结构

的一致性。
具体而言,若设局部子图为 G l = (V l,E l),全局主图

为 Gg = (Vg,Eg),其中 V 为实体集合,E 为关系集合。 则

定义知识图谱的动态更新需解决实体同义消解与图谱结

构一致性维护两个核心问题。
1)

 

实体同义消解

对 ∀v∈V l,∀u∈Vg,若实体 v与实体 u的相似度大

于一定阈值,则将两者合并。 因而定义 Jaccard 相似度与

基于语义指纹向量的余弦相似度实现相似实体的去冗

合并。
(1)Jaccard 相似度

J(u,v) = (v) ∩ (u)
(v) ∪ (u)

(4)

其中, 表示将字符串转换为字符集合,通过对两字

符串实体 v,u 集合的并集与交集计算可快速简单实现相

似实体的相似度度量。
(2)语义指纹向量余弦相似度

基于字符串比较的方法简单但缺乏语义信息,而在

多来源知识文档中,文字书写风格往往不统一,如“电机

疲劳”与“电机老化”表述不同但表意接近,此时则需借

助词嵌入模型进行知识融合,词嵌入模型通过大规模语

料库来学习词的向量表示,该向量表示捕捉了词汇的语

义信息和语境信息,语义上相似的词在向量空间中的距

离也相近。
但仅靠实体,表意有限,因而需充分借助各实体的本

体描述、上下文片段及实体的邻接关系与邻接实体获取

更为全面的综合性表达。 对图谱内某实体 v,生成语义指

纹向量 ev,即:
ev = Embedding(ϕont(v)‖ϕctx(v)‖ϕrel(v)) (5)

式中: Embedding 表示嵌入模型;‖ 表示向量拼接;ϕont

为本体描述;ϕctx 为上下文片段;ϕrel 为实体邻接的三元

组。 则对另一实体 u其语义指纹向量为 eu,则实体 v与实

体 u 的余弦相似度度量为:

Ccos(ev,eu) =
eT
v eu

ev · eu
(6)

通过上述基于语义指纹向量的余弦相似度度量可实

现对复杂实体间的相似度度量。
2)

 

图谱结构一致性维护

在局部子图向全局图谱合并的过程中,需保证图谱

结构中实体及关系的一致性,因而构建映射函数 ϕ 使得

其满足:
(1)实体映射

ϕ:V l → Vg ∪ Vnew (7)
式中: Vnew 为新增节点集合,也即局部图谱中无法与全局

图谱匹配的节点集合,生成规则为:
 

Vnew = {v ∈ V l | u ∈ Vg:sim(v,u) > θ} (8)
式中:sim 为式(4)与(6)代表的相似度度量。 对每个局

部节点 v ∈ V l,ϕ(v) 的取值只能是以下两种之一,即:
a. 全局图谱中的某个节点(即 ϕ(v) ∈ Vg),表示 v与

全局图谱中的节点匹配。
b. 新增节点集合中的节点(即 ϕ(v) ∈ Vnew),表示 v

是局部图谱独有的新实体。
(2)关系映射约束

ϕ(E l) = {(ϕ( s),ϕ( t)) | ( s,t) ∈ E l} (9)
局部图谱中的每条边 ( s,t) 在映射后变为

 

(ϕ( s),
ϕ( t)),所有映射后的边构成 ϕ(E l), 这些边必须存在于

合并后的全局图谱中。
约束条件:边映射后的两端节点必须有效,即

 

ϕ( s)
和 ϕ( t)

 

必须属于 Vg ∪ Vnew。
 

通过上述方法可使得局部图谱的原始关系在全局图

谱中完整保留,具体算法流程如算法 1 所示。

算法 1:
 

图谱动态集成更新机制

输入:
 

局部图谱 Gl,全局图谱 Gg, Jaccard 阈值 θ j,余弦阈值 θ c

输出:
 

更新后的全局图谱 G′g
　 1:

 

初始化映射

ϕ ← Ø,Vnew ← Ø
　 2:

 

实体对齐阶段

for
 

each
 

v ∈ Vl
 do

　 matched←False
　 for

 

each
 

u ∈ Vg
 do

J(u,v)
if　 J > θj

 then
　 　 　 　 ϕ[vid ] ← uid

　 　 　 　 matched←True
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　 　 　 　 break
end

 

if
end

 

for
　 　 if　

 

􀱑
 

matched
 

then
 

　 　 　 Vnew ← Vnew ∪ {v}
end

 

if
end

 

for
　 3:

 

语义增强对齐

if
 

Vnew ≠ Ø
 

then
　 　 El ← EMBED(·),Eg ← EMBED(·)
　 　 for

 

each
 

v ∈ Vnew
 do

　 　 　 for
 

each
 

u ∈ Vg
 do

　 　 　 　 Ccos(ev,eu)　 (ev = El[v],eu = Eg[u])
　 　 　 　 if

 

Ccos > θc
 then

　 　 　 　 　
ϕ[vid ] ← uid

Vnew ← Vnew \{v}
　 　 　 　 　 break
　 　 　 　 end

 

if
　 　 　 end

 

for
　 　 end

 

for
end

 

if
　 4:

 

实体合并

V′g ← Vg ∪ (Vl \dom(ϕ))　
(其中, dom(ϕ) = {v ∈ Vl | ϕ(v) ∈ Vg})

　 5:
 

关系重构

E′g ← Eg ∪ {(ϕ( s),ϕ( t)) | ( s,t) ∈ El ∧ {ϕ( s),
ϕ( t)} ⊆ V′g}

　 return
 

G′g(V′g,
 

E′g)
end

 

procedure

　 　 通过上述双层相似度检测的实体融合方法及图谱结

构一致性维护机制,可实现多源文档抽取出的局部图谱

间的实体消融与集成,实现同名故障实体、相似故障模式

的整合,构建精简完备的知识图谱,服务后续全局性故障

诊断与推理。

3　 基于幂编码的故障子图即时蒸馏方法

　 　 海量多源知识经过规范化知识抽取构建起大规模诊

断图谱后,为降低维修排故人员对全局图谱的认知负荷,
提高诊断排故效率,设计如图 4 所示的基于幂编码的故

障子图即时蒸馏方法。
具体而言,根据维修排故人员针对某一故障原因,故

障现象等模糊认知从全局图谱中定位相关实体,并进一

步以该相关实体为中心,从全局图谱中蒸馏以该故障现

象 / 维修操作为中心的故障子图,为维修排故人员快速提

供可解释的可视化验证。

图 4　 基于幂编码的故障子图即时蒸馏方法

Fig. 4　 On-demand
 

fault
 

subgraph
 

distillation
 

via
 

power
 

encoding

3. 1　 LLM 与词向量联合的实体模糊检索

　 　 完备知识图谱中包含本体约束下的所有实体与相互

关系,正则匹配等本质为基于字符串对比的语义检索方

法,虽然可以快速筛选出备选实体,但不具备语义信息,
面对节点繁多的知识图谱,其筛选的范围也会随之增大,
增大维修测试人员定位意向实体的筛选难度。

此外,传统 RAG 技术中仅通过将用户的问询向量化

后与文段向量进行相似度匹配定位相关文档,用户询问

的关键语义较难与文段精准匹配,造成问答效果下降。
因而,为提升维修测试人员与知识图谱的交互与排故效

率,设计 LLM 与词向量联合的模糊检索方法快速定位需

查询实体。
具体而言,如图 5 所示,为在故障诊断图谱中更为细

粒度精准定位用户关心的实体,首先利用 LLM 从用户

“输入描述”抽取本体约束下的实体,而后利用嵌入模型

将“抽取实体”向量化为 m 维,通过语义向量相似度对比

图谱中 n 个实体向量实现模糊检索。

图 5　 LLM 与词向量联合的实体模糊检索

Fig. 5　 Fuzzy
 

entity
 

retrieval
 

via
 

joint
 

LLM
 

and
 

word
 

embeddings
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具体计算过程可表述为:

s =
qT·w1

q · w1
,

qT·w2

q · w2
,……,

qT·wn

q · wn

é

ë
êê

ù

û
úú

(10)
式中: q ∈ Rm×1 为 “ 抽取实体” 的向量化表示;W =
[w1,w2,…,wn] ∈ Rm×n

 

为知识图谱实体嵌入矩阵(包含

n 个实体向量);通过余弦相似度计算,生成相似度评分

向量 s ∈ R1×n,通过评分排序生成候选实体集合 C = {ei |
si > τ} k

i = 1;其中阈值 τ 可用于动态调整检索范围,帮助维

修测试人员选定关心实体,从而有效弥补维修人员对航

天器机电设备知识体系中潜在实体关联的认知盲区。
3. 2　 基于幂编码蒸馏的节点多跳传播建模

　 　 在面向知识图谱的航天器机电设备故障诊断中,在
选定关心实体后,仍需以该实体为中心,通过邻接矩阵对

多跳关系建模,构建故障子图以实现故障的定位与原因、
维修操作等快速查询。

具体而言,邻接矩阵以矩阵形式精确刻画节点间的

连接关系,对于图谱 G = (V,E),其中,V为实体集合,E为

关系集合,其邻接矩阵A是 V × V 的方阵,A中的元素

A ij 满足:

A ij =
1, 存在边 (vi,v j) ∈ E
0, 其他{ (11)

在知识图谱的图结构中,定义布尔半环运算:
a 􀱇 b = a ∨ b, 逻辑或

a 􀱋 b = a ∧ b, 逻辑与{ (12)

则可进一步定义,用于描述图中所有顶点对之间的

n 跳可达性矩阵 A(n) 为:
A(n) = (I 􀱇 A) 􀱋 (I 􀱇 A) n-1,逻辑与布尔矩阵运算

(13)
式中: I 为单位矩阵;A(n) 元素 A(n)

i,j = 1⇔∃ 路径 i → j 的
传播关系且长度 ≤ n。

为利用 A(n) 实现对图谱中意向实体周边指定 n 跳数

的邻接子图计算,通过快速幂分解定理实现大规模图谱

的指定跳数的即时蒸馏。
快速幂分解定理:对任意正整数 n, 存在唯一二进制

分解,即:

n = ∑
m

k = 0
2dk,

 

dk ∈ N (14)

令分解后的幂编码集 Dn = {d1,d2,…,dm},则矩阵

幂 A(n) , 可分解为:

(I 􀱇 A) n = ∏
d∈Dn

(I 􀱇 A) 2d (15)

采用快速幂算法计算 A(n) 时,需要⌊log2n」 次矩阵平

方操作,k次矩阵乘法操作。 其中,⌊log2n」 = max{ j ∈ Z |
2 j ≤ n},　 k ≤⌊log2n」 + 1。 因而其时间复杂度 T fast 有:
　 T fast(n) = O(⌊log2n」 + k)·N3) = O(logn·N3) (16)

因而,通过快速幂计算,利用二进制分解和平方迭代

策略,可充分利用图谱邻接矩阵的稀疏性特征,极大程度

降低 n 跳可达性矩阵 A(n) 的计算时间复杂度,从而实现

对大规模图谱的即时蒸馏,获取故障子图以满足故障定

位、邻接故障传播及相应维修操作的快速查询与可解释

的可视化验证。

4　 基于子图 RAG 的智能故障诊断问答方法

　 　 知识图谱对于故障模式、设备结构与测点等故障实

体具有全局认知能力,面向航天器机电设备的故障诊断、
故障排故归零的实际需求,提出基于 LLM 的子图 RAG
推理的智能故障问答方法,通过问答实现故障子图及上

下文知识向 LLM 的动态嵌入,实现可解释图结构与问答

描述的混合问答。 从而解决传统 RAG 技术在复杂装备

故障诊断中存在的知识割裂性与推理不可追溯问题。
如图 6 所示,首先通过第 3 章的语义模糊检索定位

及幂编码蒸馏获取节点的多跳故障子图实现知识检索,
基于本体约束,一方面获取故障子图的结构化图传播特

征,另一方面获取各实体的原文描述,为用户提供可解

释、可溯源的知识分析。

图 6　 基于子图 RAG 的智能故障问答方法

Fig. 6　 Intelligent
 

fault
 

diagnosis
 

Q&A
 

method
 

via
 

subgraph-RAG

其次,为最大化 LLM 对图谱的认知关系,设计诊断

专家提示词并将故障子图及其上下文作为 LLM 输入前

缀,引导 LLM 进行知识推理分析,通过 LLM 的语义理解、
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分析能力给出全面综合可解释溯源的回答,进一步面向

诊断结果,与维修人员实时交互,通过“交互式问答” 的

方式明晰故障传播逻辑及其应对措施等。 诊断专家提示

词模板设计为:
1)系统角色

定义该角色为航天器机电设备故障诊断领域的专

家,专长包括分析复杂系统组件关系、追踪故障传播路

径、推荐维护策略。
2)故障子图及上下文

故障子图及上下文包含实体列表(每个实体包含名

称、类型、描述等信息)、关系列表(每个关系包含源实体、
目标实体、类型等信息)以及实体和关系的上下文信息。

3)推理规则

如果问题涉及故障传播,输出加粗的关键实体及其

路径;如果故障子图无法完成故障推理服务,根据故障子

图,向用户提出支持推理的所需内容或者疑问,如若追加

故障子图中不存在的知识,则必须标明。
该模板通过结构约束与语义增强的混合提示策略,

引导大语言模型实现故障路径的推理、确定情境下的参

数追问以及应对措施的推荐。

5　 实验结果分析

　 　 为验证本研究方法在航天器机电设备故障诊断中的

有效性选取太阳翼驱动机构作为验证对象。 作为航天器

中用于控制太阳翼姿态和角度的核心部件,太阳翼驱动

机构承担着太阳翼姿态调控与能量传输的双重功能,其
能量转换与机械运动的强耦合使得故障传播具有高度级

联性,作为航天器中不能够采取整机冗余备份的连续运

行装置,它从根本上影响着航天器的可靠性和寿命。
面向其可靠性知识文本与故障模式、影响和危害性

分析表格[21-23] ,在上述故障诊断本体约束下,利用 LLM
挖掘与图谱动态集成方法,自动构建如图 7 所示的太阳

翼驱动机构诊断图谱(部分)。

图 7　 某太阳翼驱动机构故障诊断知识图谱(部分)
Fig. 7　 Partial

 

SADA
 

fault
 

diagnosis
 

knowledge
 

graph

基于浏览器 / 服务器(browser / server,
 

BS)架构,利用

Flask 后端框架,Vue2. 0 前端框架,Axios 前后端交互方

式,结合 D3. js 构建图数据库,开发的智能故障诊断辅助

问答原型系统如图 8 所示。 诊断排故人员通过询问发生

的故障现象,利用语义检索的模糊匹配定位故障实体,并
以该实体为中心利用幂编码的矩阵运算快速实现子图蒸

馏,展示子图中实体之间的可解释传播路径关系。

图 8　 智能故障诊断问答交互界面

Fig. 8　 Interactive
 

interface
 

for
 

intelligent
 

fault
 

diagnosis
 

Q&A

如以“卡死”这一故障现象为例,定位该实体的同时

获取包含其邻接关系及节点的故障子图,在该故障子图

中,LLM 根据故障子图中“设备结构”、“故障原因”、“故

障现象”节点之间的传播关系定位“卡死”这一故障位于

“轴系”中,故障原因为“温度梯度过大 / 支撑轴承内有多

余物 / 太空中的随机振动”等,并可针对不同的故障原因

提出相应的维修建议。 故障子图展现出了完整的故障传

播链路:卡死→机构不能转动→SADA 输出轴不能转动

→控制系统不能控制 SADA 转动→影响 SADA 能源获

取,进一步点击图谱中各个实体,可查看该实体的知识来

源。 通过图 8 结构对故障传播路径的直观展示与原文定

位,可满足太阳翼驱动机构故障诊断中的可解释性,可溯

源性需求,验证了方法的有效性。
5. 1　 图谱挖掘完备性实验

　 　 对基于 LLM 规范挖掘与图谱动态集成机制得到的太

阳翼驱动机构故障诊断图谱中各本体约束下的节点及关

系统计如表 2 与 3 所示,共计 414 个实体与 931 条关系。
为综合验证图谱抽取的完备性,通过人工对太阳翼

驱动机构诊断图谱内容作验证与查漏补缺,得到下述完

备知识图谱的实体及关系统计如表 4 与 5 所示,共计

437 个实体和 1
 

018 条关系。
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表 2　 LLM 抽取的故障图谱中的实体

Table
 

2　 Entities
 

in
 

LLM-extracted
 

fault
 

knowledge
 

graphs

实体类型 数量 / 个

设备结构 31

测点信号 9

故障

模式

故障原因 109

故障现象 183

应对措施 82

表 3　 LLM 抽取的故障图谱中的关系

Table
 

3　 Relationships
 

in
 

LLM-extracted
 

fault
 

knowledge
 

graphs

关系类型 数量 / 个

属于 62

位于 208

监测 84

导致 406

建议 171

表 4　 人工校核后故障图谱中的实体

Table
 

4　 Entities
 

in
 

human-verified
 

fault
 

knowledge
 

graphs

实体类型 数量 / 个

设备结构 31

测点信号 9

故障

模式

故障原因 116

故障现象 197

应对措施 84

表 5　 人工校核后故障图谱中的关系

Table
 

5　 Relationships
 

in
 

human-verified
 

fault
 

knowledge
 

graphs

关系类型 数量 / 个

属于 62

位于 213

监测 87

导致 479

建议 177

　 　 因而图谱的综合实体抽取完备率为 94. 74% ,关系抽

取完备率为 91. 45% ,验证了 LLM 赋能的图谱挖掘与图

谱动态更新方法的有效性。
5. 2　 图谱蒸馏效率实验

　 　 为满足实际应用中快速可视化的需求,进一步衡量

故障诊断图谱蒸馏的效率,定义单跳蒸馏平均耗时 TDistill

评价图谱蒸馏效果。

TDistill =
∑
i∈V

T i

maxp j∈paths( length(P j))

V
(17)

式中: V 为诊断图谱中的实体集合;T i 是从故障诊断全图

中以第 i 个实体为中心蒸馏案例子图所用时间;paths 为
第 i 个 案 例 子 图 中 所 有 实 体 间 的 传 播 路 径 集 合;
length(P j) 是路径 P j 的长度,即路径上节点的数量,反映

蒸馏深度。
通过对故障全图中 437 个实体逐一进行子图蒸馏,

记录各子图的蒸馏时间与最大传播路径长度,并计算单

跳蒸馏平均耗时 TDistill, 结果如表 6 所示。

表 6　 图谱蒸馏实验结果

Table
 

6　 Experimental
 

results
 

of
 

knowledge
 

graph
 

distillation

实体类型 TDistill / ms

设备结构 13. 33

测点信号 9. 69

故障模式 14. 40

应对措施 11. 56

　 　 从表 6 可以看出,毫秒级的子图蒸馏单跳传播时间

可为现场诊断排故人员快速提供图谱节点多跳传播建模

的可视化验证。
5. 3　 图谱 RAG 与 RAG 对比实验

　 　 为进一步评估子图定位嵌入的图谱 RAG 问答与

RAG 问答效果,面向故障诊断图谱中故障现象实体构造

问题模板:“{故障现象} 发生的原因是什么? 位于哪个

设备结构中? 针对此问题又该如何采取针对性措施?”,
该问题模板面向故障诊断业务场景,关切故障现象的故

障原因,故障位置,故障应对方法,调用同一 LLM,分别使

用 RAG 方法,图谱 RAG 方法与仅 LLM 回答方法对构造

的问题进行回答。
例如,针对问题:“电机定子或转子或定子绕组失效

发生的原因是什么? 位于那个设备结构中? 针对此问题

又该如何采取针对性措施?”可给出 4 种回答结果,即:
1)标准答案:电机定子或转子或定子绕组失效发生

的原因是疲劳失效或高温烧毁,位于步进电机中。 针对

此问题,可以采取定子绕组备份;选用热阻较小的定子绕

组材料;散热设计等针对性措施。
2)图谱 RAG 回答结果:电机定子或转子或定子绕组

失效的原因是疲劳失效或高温烧毁。 这个问题位于步进

电机中。 针对此问题,可以采取的针对性措施为:(1)定
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子绕组备件;选用热阻较小的定子绕组材料;散热设计。
(2)信号检测,监测疲劳失效或高温烧毁。

3)RAG 回答结果:电机定子或转子或定子绕组失效

的原因有:(1)漆包线断线;(2)漆包线焊点开焊;(3)漆

包线短路;(4) 电机引线短路。 位于电机内部结构中。
针对此问题,可采取的措施为:(1)设计上采用高可靠性

材料和工艺;(2) 生产、装配阶段严格质量控制,确保焊

接牢固;(3)加强绝缘保护,防止短路;(4)定期检测和维

护,及时发现隐患。 在轨状态下,可使用切换备份的方法

解决。
4)仅 LLM 回答结果:电机定子、转子或定子绕组失

效的原因主要有:绝缘老化、过载运行、机械振动或冲击、
制造缺陷等。 这些部件位于 SADA 的驱动电机结构中。
针对此问题可采取以下措施:选用高可靠性航天级电机

材料、加强绝缘防护设计、优化电机负载匹配、实施振动

环境试验验证、进行冗余备份设计等。
同时,就回答结果设计关键词准确率 P、关键词召回

率 R、 关键词 F1 分数、 标准化交叉熵分数( normalized
 

cross-entropy
 

score,
 

NCES)和语义相似度 Simsem 这 5 个指

标以综合评估问答效果。

P = M ∩ S
M

(18)

R = M ∩ S
S

(19)

F1 = 2·P·R
P + R

(20)

式中: M 与 S 分别为系统生成答案 SA 及标准答案 GA 的

关键词集合;P 用于衡量 SA 中与 GA 相关的关键词比例,
反映回答的精准性;R用于评估 SA对GA关键词的覆盖程

度,体现答案的全面性;F1 为综合精确率与召回率的调

和平均数,用于平衡系统回答的准确性与完整性。
为避免仅依靠关键词带来的评估不完备性,从词频概

率分布角度进一步量化生成答案与标准答案之间的相似

度,设计基于标准化交叉熵的评估指标 NCES。 对两个答

案 SA 和 GA 进行分词处理,得到词集合 W = {w1,w2,…,
wn}。 对于每个答案,计算其中各个词语的概率分布:

PG(w) =
countGA(w)

∑
w′∈W

countGA(w′)
(21)

PS(w) =
countSA(w)

∑
w′∈W

countSA(w′)
(22)

式中: PG(w) 表示词语 w在标准答案中的概率;PS(w) 表

示词语w在系统答案中的概率;countGA(w) 和 countSA(w)
分别表示词语 w 在标准答案和系统答案中的出现次数;
实际交叉熵 H(PG,PS) 的计算如式(23) 所示。

H(PG,PS) = - ∑
w∈W

PG(w)logPS′(w) (23)

式中: PS′(w) = max(PS(w),􀆠) 是经过平滑处理的概率分

布;􀆠 = 1 × 10 -10 是平滑因子。 则标准化交叉熵分数

(NCES)为:

NCES = 1 -
H(PG,PS) - H(PG,PG)

Hmax - H(PG,PG)
(24)

式中: H(PG,PG) = - ∑
w∈W

PG(w)logPG(w) 为自信息熵,表

示理想情况下(完全匹配) 的交叉熵;Hmax = - log􀆠 为最大

交叉熵,表示最差情况下(完全不匹配) 的交叉熵。 则当

NCES = 1 表示生成答案与标准答案的词频分布完全一

致,NCES = 0 表示两个分布完全不同。
进一步,从问答的语义相似度考虑,引入语义相似度

Simsem,通过向量空间中的语义距离评估生成答案与标准

答案的语义一致性,调用语义向量模型将各问答结果表

示为 1
 

024 维向量并按式(25)比较系统生成答案与标准

答案之间的语义相似性。

Simsem = cos(va,vg) =
va·vg

va · vg
(25)

式中: va 为系统生成答案的语义向量表示;vg 为标准答

案的语义向量表示。
从表 7 的实验结果可以看出,基于故障子图嵌入的

图谱 RAG 方法在回答关键词的准确率,召回率,F1 分数

及回答的语义相似性等方面均优于 RAG 与仅 LLM 回答

方法,体现了方法的优越性。

表 7　 智能问答实验结果

Table
 

7　 Experimental
 

results
 

of
 

intelligent
 

Q&A

诊断方法 P R F1 Simsem NCES

图谱 RAG 0. 847 0. 770 0. 798 0. 943 0. 834

RAG 0. 580 0. 439 0. 467 0. 845 0. 584

仅 LLM 0. 504 0. 196 0. 263 0. 809 0. 500

6　 结　 　 论

　 　 针对航天器机电设备故障诊断中存在的知识来源广

泛、RAG 方法知识推理深度不足等问题,以构建可解释、
高效率、知识关联性强的故障诊断框架为目标,开展了本

体约束下知识图谱与 RAG 的协同诊断问答研究。
1)本体驱动的知识挖掘与集成架构设计:通过 4 层

本体框架(FDO),结合 LLM 的提示学习、嵌入模型的语

义校准能力与图谱动态更新机制,实现多源知识的规范

化抽取与融合,解决知识挖掘可靠性低、知识关联性弱的

难题。
2)LLM 与词向量联合的幂编码子图蒸馏方法:通过

LLM 提取用户问询中的关键实体与模糊检索定位图谱实
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体,并以该实体为中心通过幂编码的图谱高效蒸馏,实现

多跳故障子图的精准定位与可视化验证,提升大规模知

识图谱的子图定位效率。
3)可解释性问答机制:开发多维 RAG 诊断代理,通

过故障子图结构特征与上下文知识的动态嵌入,提供可

解释的故障传播路径,支持故障的可溯源分析。
通过本体约束下的知识图谱与 RAG 深度协同,以太

阳翼驱动机构为验证对象,整合其故障诊断知识,实现了

知识推理深度与可解释性的提升,开发了智能故障诊断

辅助问答原型系统,可为航天器机电设备的智能化运维

提供理论支撑与技术路径。
后续研究一方面引入更多航天器机电设备对象,聚

焦于航天领域典型设备故障诊断图谱的大规模构建,一
方面结合图论与逻辑推理开发故障诊断图谱领域的推理

框架,而非仅依赖 LLM 推理,从而进一步提高故障诊断

推理的可解释性。
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