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Prediction of one-dimensional workbench localization accuracy
loss based on dynamic Bayesian network

Li Li, Liu Bingyao, Yang Hongtao,Qin Pengfei, Wang Shen’ao

(School of Mechatronics Engineering , Anhui University of Science and Technology, Huainan 232000, China)

Abstract: The worktables of core components in CNC machine may experience wear and failure over extended periods of use, leading to
reduced machining accuracy. To accurately predict positioning accuracy loss in workbenches under various factors as a function of usage
time, this study proposes a modeling and prediction method for one-dimensional workbench positioning accuracy loss based on dynamic
Bayesian network. The effectiveness of the proposed method is validated through comparative analysis of measured error data and
predicted data. First, the composition of error sources is determined based on the structural analysis of the one-dimensional workbench.
According to the established theoretical model of accuracy loss under complex operating conditions for the one-dimensional workbench,
load, speed, temperature, and time are identified as the primary factors influencing the positioning error of the workbench. Second,
experimental platform was constructed to measure positioning error data under various influencing factors. The validity of the theoretical
model was verified based on cloud map results. Next, we incorporate the time dimension to construct a dynamic Bayesian network
prediction model for workbench positioning errors under multi-factor influences. We sequentially determine the basic structure of the
dynamic Bayesian network, its network nodes, and the ranges of variable domains. Subsequently, we employ mathematical statistics and
the EM algorithm for parameter learning, obtaining the prior probability distribution for root nodes and the conditional probability for non-
root nodes. Finally, using forward and backward positioning error as an example, the dynamic Bayesian network clustering inference
algorithm was employed to predict workbench positioning error. Simultaneously, the predicted error was compared with the measured

error under identical conditions. Results indicate that both the predicted forward and backward positioning error curve and the measured
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error curve generally increase over time, exhibiting similar trends. The maximum absolute error reached 1. 63 pm, while the maximum

relative error was 13.471%. This validates the effectiveness of the prediction model.

Keywords : one-dimensional workbench; accuracy loss; positioning error; dynamic Bayesian network ; predictive modelin
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Fig.2 The error source of workbench
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Table 5 Forward and backward localization error

state transfer matrix

P(Ny) IP(Nyg") | 1(T) ()  W(T)  IV(T)
I(T-1) 0.897 7 0. 068 8 0.007 4 0.000 6
m(r-1) 0.090 7 0.821 4 0.102 2 0.008 9
(¢ 7-1) 0.0110 0.1059 0.852 6 0.1135
IV(T-1) 0. 000 6 0.003 9 0.037 8 0.8770
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Fig. 9  Prediction probability curves for front-back

localization errors
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Table 6 Maximum error ratio

it m & R AR/ pum RAXHRE L/ %
Kl 10(a) 1.17 13. 471
& 10(b) 1.63 11.983
& 10(c) 1.25 7.116
[ 10(d) 0.91 10. 734
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