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基于动态贝叶斯网络的一维工作台定位精度损失预测∗

李　 莉,刘柄瑶,杨洪涛,秦鹏飞,王申奥

(安徽理工大学机电工程学院　 淮南　 232000)

摘　 要:数控机床核心零部件工作台随着使用时间的增加会出现磨损、失效现象,造成加工精度降低。 为了精确预测工作台在

各影响因素下随着使用时间的动态特征带来的定位精度损失,以一维工作台为研究对象,提出了基于动态贝叶斯网络的一维工

作台定位精度损失建模预测方法。 通过实测误差数据和预测数据对比分析,验证所提方法的有效性。 首先,根据一维工作台的

结构分析确定误差源组成,根据建立的一维工作台在复杂工况下的精度损失理论模型,得到负载、速度、温度、时间为工作台定

位误差主要影响因素。 其次,搭建实验装置测得不同影响因素下的定位误差数据,根据云图结果验证理论建模的正确性。 接

着,引入时间维度构建多因素影响下一维工作台定位误差动态贝叶斯网络预测模型,依次确定动态贝叶斯网络的基本结构、网
络节点和变量域范围。 随后,采用数理统计和 EM 结构算法对参数学习,得到根节点的先验概率分布和非根节点的条件概率。
最后,以前后定位误差为例,利用动态贝叶斯网络聚类推理算法实现工作台定位误差的预测,同时对比相同条件下的实测误差。
结果表明,工作台前后定位误差预测与实测曲线总体均随时间的增加而增大,两者变化趋势相似,最大绝对误差为 1. 63

 

μm,最
大相对误差为 13. 471% ,验证了预测模型的有效性。
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Abstract:The
 

worktables
 

of
 

core
 

components
 

in
 

CNC
 

machine
 

may
 

experience
 

wear
 

and
 

failure
 

over
 

extended
 

periods
 

of
 

use,
 

leading
 

to
 

reduced
 

machining
 

accuracy.
 

To
 

accurately
 

predict
 

positioning
 

accuracy
 

loss
 

in
 

workbenches
 

under
 

various
 

factors
 

as
 

a
 

function
 

of
 

usage
 

time,
 

this
 

study
 

proposes
 

a
 

modeling
 

and
 

prediction
 

method
 

for
 

one-dimensional
 

workbench
 

positioning
 

accuracy
 

loss
 

based
 

on
 

dynamic
 

Bayesian
 

network.
 

The
 

effectiveness
 

of
 

the
 

proposed
 

method
 

is
 

validated
 

through
 

comparative
 

analysis
 

of
 

measured
 

error
 

data
 

and
 

predicted
 

data.
 

First,
 

the
 

composition
 

of
 

error
 

sources
 

is
 

determined
 

based
 

on
 

the
 

structural
 

analysis
 

of
 

the
 

one-dimensional
 

workbench.
 

According
 

to
 

the
 

established
 

theoretical
 

model
 

of
 

accuracy
 

loss
 

under
 

complex
 

operating
 

conditions
 

for
 

the
 

one-dimensional
 

workbench,
 

load,
 

speed,
 

temperature,
 

and
 

time
 

are
 

identified
 

as
 

the
 

primary
 

factors
 

influencing
 

the
 

positioning
 

error
 

of
 

the
 

workbench.
 

Second,
 

experimental
 

platform
 

was
 

constructed
 

to
 

measure
 

positioning
 

error
 

data
 

under
 

various
 

influencing
 

factors.
 

The
 

validity
 

of
 

the
 

theoretical
 

model
 

was
 

verified
 

based
 

on
 

cloud
 

map
 

results.
 

Next,
 

we
 

incorporate
 

the
 

time
 

dimension
 

to
 

construct
 

a
 

dynamic
 

Bayesian
 

network
 

prediction
 

model
 

for
 

workbench
 

positioning
 

errors
 

under
 

multi-factor
 

influences.
 

We
 

sequentially
 

determine
 

the
 

basic
 

structure
 

of
 

the
 

dynamic
 

Bayesian
 

network,
 

its
 

network
 

nodes,
 

and
 

the
 

ranges
 

of
 

variable
 

domains.
 

Subsequently,
 

we
 

employ
 

mathematical
 

statistics
 

and
 

the
 

EM
 

algorithm
 

for
 

parameter
 

learning,
 

obtaining
 

the
 

prior
 

probability
 

distribution
 

for
 

root
 

nodes
 

and
 

the
 

conditional
 

probability
 

for
 

non-
root

 

nodes.
 

Finally,
 

using
 

forward
 

and
 

backward
 

positioning
 

error
 

as
 

an
 

example,
 

the
 

dynamic
 

Bayesian
 

network
 

clustering
 

inference
 

algorithm
 

was
 

employed
 

to
 

predict
 

workbench
 

positioning
 

error.
 

Simultaneously,
 

the
 

predicted
 

error
 

was
 

compared
 

with
 

the
 

measured
 

error
 

under
 

identical
 

conditions.
 

Results
 

indicate
 

that
 

both
 

the
 

predicted
 

forward
 

and
 

backward
 

positioning
 

error
 

curve
 

and
 

the
 

measured
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error
 

curve
 

generally
 

increase
 

over
 

time,
 

exhibiting
 

similar
 

trends.
 

The
 

maximum
 

absolute
 

error
 

reached
 

1. 63
 

μm,
 

while
 

the
 

maximum
 

relative
 

error
 

was
 

13. 471% .
 

This
 

validates
 

the
 

effectiveness
 

of
 

the
 

prediction
 

model.
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0　 引　 　 言

　 　 一维工作台(简称工作台)是数控机床核心部件之

一,但是随着使用时间的增加,工作台会出现磨损、失效

等现象,造成精度降低,进而直接影响数控机床的加工精

度[1] 。 为了精准的预测工作台精度损失,需建立其在多

因素影响下的定位误差预测模型,近年来许多学者进行

了深入研究。
谭雁清等[2] 基于机床滑动导轨的磨损特点,根据导

轨的精度、实际工况、材料特性和磨损模式的定量关系,
建立了滑动导轨的精度预测模型。 Cheng 等[3] 针对机床

进给系统的滚珠丝杠,建立了动态模型描述滚珠与滚道

之间的滑动与滚动,实现了对滚珠丝杠副的磨损预测。
杜柳青等[4] 等提出一种基于混沌理论与增量学习的数控

机床运动精度混沌自演化预测方法,利用长短期记忆网

络(long
 

short-term
 

memory,LSTM) 对时间序列长期依赖

关系的出色捕捉能力,在混沌相空间中追踪数控机床运

动精度演化轨迹的内在规律,提升长时间预测的准确性

和鲁棒性。 Chen 等[5] 基于自适应神经模糊逻辑系统建

立寿命预测模型,通过粒子滤波算法不断更新后验状态

分布,预测了轴承的剩余使用寿命。 杨赫然等[6] 探究数

控机床进给系统中各因素对热误差的影响规律,采用混

沌改进松鼠搜索算法,并利用改进的算法对神经网络进

行优化,建立热误差预测模型,改进前后精度有较大提

升。 Guo 等[7] 构建了基于性能退化的数控机床精度健康

评估体系,将性能衰退过程视为独立增量过程,采用

Gamma 分布随机过程对退化量分布进行建模,实现了装

备性能衰退趋势的量化评估。 邓超等[8] 针对数控机床的

寿命预测需求,提出基于 Wiener 过程的性能衰退建模方

法,引入动态阈值分布函数,建立了剩余寿命与状态监测

数据间的概率映射关系。 Wang 等[9] 提出了一种基于支

持向量机的数控机床状态预测方法,利用加工中收集的

振动信号序列数据,预测了数控机床的性能状态趋势。
韩莹[10] 等针对轴承剩余寿命预测中故障始发时刻,提出

基于融合特征和随机配置网络的轴承剩余寿命预测方

法。 采用互补集合经验模态分解对原始轴承水平振动信

号进行分解,再提取其时域、频域信号,构建融合特征。
并结合能反应轴承退化的特征构建健康数据集,离线建

模进行预测。 李帅等[11] 为提高工件的加工精度,降低数

控机床热误差对数控钻攻中心的影响,解决不同工况下

热误差的预测精度不佳问题,采用鹈鹕优化算法( pelican
 

optimization
 

algorithm,
 

POA)对神经网络进行优化,确定

反向传播神经网络算法( back
 

propagation
 

neural
 

network,
 

BP)的最优权值和阈值,建立进给系统热误差的鹈鹕优

化算法优化 BP 神经网络混合算法( pelican
 

optimization
 

algorithm-back
 

propagation
 

neural
 

network,
 

POA-BP) 的预

测模型,具有较强的有效性和精确性。
上述研究虽然取得了一定成果,但建立的精度预测

模型大多未考虑各影响因素的全面影响,未引入各误差

分量的先验分布参与建模,造成建模预测精度低,因此本

文拟在充分分析工作台误差源、影响因素和各误差分量

先验分布规律基础上,利用动态贝叶斯网络建立工作台

定位精度损失的预测模型。

1　 工作台定位误差来源与影响因素分析

1. 1　 工作台结构组成和误差源分析

　 　 如图 1 所示为工作台的结构组成,主要由伺服电机、
滚珠丝杠、导轨系统、滑块、滑台组成。

图 1　 工作台结构组成

Fig. 1　 The
 

structure
 

composition

工作台运行原理是由伺服电机提供动力,通过联轴

器与支撑轴承连接,驱动滚珠丝杠进行旋转运动,推动滑

台在导轨上移动。 运行中滑块和导轨在水平面和侧面受

载荷的摩擦磨损,会引起两者配合关系发生改变[12-13] ,导
致滑台产生前后、左右和上下窜动定位误差以及俯仰、偏
摆和滚转角角度误差。 误差源如图 2 所示。
1. 2　 工作台定位误差影响因素分析

　 　 工作台的精度损失主要源于其核心部件导轨系统和

滚珠丝杠系统。 导轨受空间垂直和径向载荷的作用产生

摩擦磨损,滚珠丝杆受伺服电机的驱动扭矩、轴向力和热

膨胀作用,造成丝杠螺距变化和扭转变形[14] ,均引起工

作台定位精度损失。



30　　　 仪　 器　 仪　 表　 学　 报 第 4 6 卷

图 2　 工作台误差源

Fig. 2　 The
  

error
 

source
 

of
 

workbench

综上所述对工作台定位精度建模主要是导轨系统和

滚珠丝杠系统精度损失下的定位误差建模两部分。 由

1. 1 节知工作台定位误差包括 3 个方向:上下窜动误差

ΔT、左右窜动误差 ΔL、 和前后窜动误差 ΔD。 根据文

献[15]的研究成果,建立上述一维工作台定位误差总模

型如式(1)所示。
ΔT = hFi - hFi0

ΔL = hSi - hSi0

ΔD = ΔF + ΔS + ΔH = mv2

F + mgsin αcos α - F f

+

　 mv2

F + mgsin βcos β - F f

+ ΔH

ΔH = Δm + Δz + ΔEem = P
2π

θ + ϕ
2π

Δp +

　 ∑
M

i = 1
ξ × (TLi

- Tb) × L i + ξ × (Tb - Tb0) × Px

ì

î

í

ï
ï
ï
ï
ï
ïï

ï
ï
ï
ï
ï
ï

(1)
式中: hFi 和 hFi0 分别为滑块在水平面的最大磨损深度和

初始时磨损深度;hSi 和 hSi0 分别为滑块在侧面的最大磨

损深度和初始磨损深度;ΔF、ΔS 为工作台受水平面、侧面

负载作用时的定位误差;F 为驱动力;m 为工作台质量;
α 为工作台俯仰角,β 为工作台偏摆角;v 为工作台速度;
ΔH 为丝杠引起的总定位误差;Δm 为丝杠扭转变形引起的

定位误差;Δz 为丝杠螺距变形引起的定位误差;Eem 为丝

杠行程范围内的热膨胀误差;P 为丝杠导程;θ 为丝杠相

对于电机的转角变化;ϕ为摩擦角;Δp为丝杠轴向变形的

最大螺距变形量;ξ 为螺杆热膨胀系数;Tb 为实时环境温

度;Tb 0 为初始环境温度;Px 为实时位置。
由式(1)可以看出,一维工作台定位误差分布在空

间三维方向,其大小受负载、速度、温度、负载位置影响,
误差影响因素多,存在耦合关系,随使用时间的变化规律

复杂。 利用上述理论模型建立的误差预测模型存在结构

参数、材料特性参数、配合关系理想化等问题,未综合考

虑各误差分量的先验变化规律和各影响因素的相关性影

响,造成理论白化模型预测精度偏低。 利用动态贝叶斯

网络建立误差预测模型不仅可以考虑复杂误差相关性影

响,而且能够在各误差分量先验分布基础上进一步迭代,
精确预测多维定位误差数值,因此本文采用动态贝叶斯

网络建立一维工作定位误差预测模型。

2　 基于动态贝叶斯网络的工作台定位误差
建模预测方法

2. 1　 贝叶斯网络算法

　 　 1)算法基础

贝叶斯网络是由节点、边和概率表组成的有向无环

图。 其中节点代表变量,节点之间的边代表变量间的依

赖关系,不同节点具有不同的概率分布,根节点 X 的概率

分布是其边缘分布 P(X),而非跟节点 X的概率分布是其

条件概率分布 P (X i Par(X i))。 假设网络中的变量为

X1,X2,…,Xn,则每个变量的联合概率分布如式 (2)
所示。

P(X1,X2,…,Xn) = ∏
n

i
P (X i Par(X i)) (2)

其中, Par(X i) 表示变量 X i 父节点发生的概率。
标准的动态贝叶斯网络可以表示为一个二元组

(B1,B→ ),其中 B1 是标准贝叶斯网络,其定义初始变量

Ω1 = {X1(1),X2(1),…,Xn(1)} 的概率分布为 Pr{Ω1};
B→ 是包含两时间片的贝叶斯网络,其定义的两个时间片

的条件概率分布如式(3) 所示。

Pr{Ωt Ωt -1} = ∏
n

i = 1
Pr{X i( t) | Pa(X i( t))} (3)

式中: Pr(X i( t)) 表示时间 t 处节点 i 发生的概率;
Pa(X i( t)) 表示 X i( t) 父节点发生的概率。

基于齐次性假设和马尔可夫假设[16] ,根据初始分布

与相邻切片之间的条件分布,将动态贝叶斯网络网络扩

展至 T 个时间切片,得到跨多个时间片的联合概率分布

如式(4)所示,三时间片的动态贝叶斯网络如图 3 所示。

Pr{Ω1:t} = Pr{Ω1} × ∏
T

t = 2
Pr{Ω1 Ωt -1} =

∏
T

t-1
∏

n

i = 1
Pr{X i( t) Pa(X i( t))} (4)

2)条件概率

条件概率反映变量间的因果关系,为了精确描述观

察到变量之间的关系,并进行预测和推断,采用期望最大

算法(expectation-maximization
 

algorithm,
 

EM)进行参数学

习和计算不完整数据的概率分布,EM 算法的核心是假设

模型包含一些隐含变量,它们的值无法直接观测,但可以

通过观测变量的值而得到一些关于隐含变量的信息,利
用这些信息估计模型参数。 分为 2 个步骤:
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图 3　 三时间片动态贝叶斯网络

Fig. 3　 Dynamic
 

Bayesian
 

network
 

for
 

three
 

time
 

slices

1)E 步(expectation
 

step),根据初始参数或前一次迭

代得到的参数计算隐含量的条件概率,如式(5)所示,隐
含量的期望值就是估计值。

Q i( z
( i) ) = p( z( i) | x( i) ;θ) (5)

式中: z( i) 表示第 i 个隐变量。
2) M 步( maximization

 

step),利用 E 步的结果,更新

模型参数估计值,如式(6)所示,通过最大化对数似然函

数来更新参数估计值。

θ = argmax
θ

∑
i

∑
zi
Q i( z

( i) )log p(x( i) ,z( i) ;θ)
Q i( z

( i) )
(6)

2. 2　 多因素影响下工作台定位误差动态贝叶斯网络模

型搭建

　 　 1)贝叶斯网络总体建模步骤

采用专家经验与数据驱动学习的方法建立工作台定

位误差动态贝叶斯网络。 首先,根据专家经验与已有研

究结论分析归类工作台定位误差的影响因素,确定节点

变量和因果关系,进而确定网络模型基本架构。 其次,利
用误差数据集训练网络模型和参数学习估计,生成各影

响因素与定位误差关系模型的先验概率分布和节点概率

参数。 最后,用动态贝叶斯网络的推理功能实现工作台

定位误差的预测。
2)贝叶斯网络结构确定

根据工作台定位误差影响因素进行层次分析与特性

概括,按照因果关系将节点配置在对应层的节点上。 构

建如图 4 所示的工作台定位误差贝叶斯网络结构图,其
由 24 个节点变量组成的复杂网络。 定位误差作为因变

量,随时间变化的过程中直接受工作台负载大小、速度、
温度和负载位置的影响。 其余 16 个节点变量也通过贝

叶斯网络信息传递,间接对定位误差产生影响。
3)节点变量域确定

确定贝叶斯网络结构后,需要对节点及状态变量域

划分。 定位误差实验装置如图 5 所示,测得不同影响因

素下的定位误差数据。

图 4　 定位误差贝叶斯网络结构

Fig. 4　 Localization
 

error
 

Bayesian
 

network
 

structure

图 5　 实验装置

Fig. 5　 Experimental
 

setup

节点变量域的确定采用“物理约束+数据驱动”的方

法[17] ,在专家经验的基础上进行误差数据驱动分析,先
根据节点的实际情况和物理意义确定变量域边界,对于

单变量误差数据根据数据特征与聚集程度用基于距离的

无监 督 聚 类 算 法 ( K-means
 

clustering
 

algorithm,
 

K-
means) [18] 将节点划分若干状态区间,然后分析节点特性

对变量域划分的合理性进行调整。 各节点含义和状态变

量域如表 1 所示。
4)动态贝叶斯网络定位误差模型的建立

以图 4 构建的网络结构为基础,根据表 1 节点变量

域与状态数定义节点状态,在构建贝叶斯网络的建模软

件(graphical
 

network
 

interface,
 

GeNIE) 软件中划分 4 个

区域,将时变特性的动态节点放在中间瞬态时间切片框

内,静态节点放在框外,左侧和右侧的小方框为初始和终

止条件,节点因果关系的指向不变,得到如图 6 所示的动

态贝叶斯网络定位误差预测模型。
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表 1　 贝叶斯网络节点及变量域

Table
 

1　 Bayesian
 

network
 

nodes
 

and
 

variable
 

domains

节点编号 节点名称 状态数 网络节点变量域设定

A1 负载大小 / kg 3 S1 = 5;S2 = 15;S3 = 25

A2 负载位置 4 笛卡尔坐标点

A3 速度 / (mm·s-1 ) 4 S1 = 1;S2 = 2;S3 = 5;S4 = 10

A4 温度 / ℃ 3 S1 = 20;S2 = 40;S3 = 60

B1 导轨材料属性 2 S1 为合金钢;S2 为其他

B2 滚珠接触变形 / μm 2 直径变形量 0 ~ 0. 003、0. 003 ~ 0. 007
 

5

B3 导轨摩擦磨损 2 S1 为 Stribeck 摩擦模型;S2 为其他

B4 电机扭矩 / N·m 3 S1 <0. 255;S2 = 0. 255 ~ 1. 13;S3 >1. 13

B5 丝杆轴向力 / N 4 S1 ≤41;S2 = 41 ~ 71;S3 = 71 ~ 101;S4 >101

B6 丝杆材料 2 S1 为合金钢;S2 为其他

B7 线胀系数 2 0 ~ 0. 000
 

01、0. 000
 

01 ~ 0. 000
 

05

C1 导轨水平磨损 / μm 2 磨损深度 0 ~ 4. 2、4. 2~ 6

C2 导轨侧面磨损 / μm 2 磨损深度 0~ 3. 19、3. 19~ 5. 5

C3 丝杆扭转变形 / ( °) 2 0 ~ 0. 094、0. 094 ~ 1. 6

C4 丝杆螺距变化 / μm 2 0 ~ 0. 28、0. 28 ~ 0. 82

C5 热膨胀误差 / μm 3 0 ~ 2. 6、2. 6~ 4. 2
 

、4. 2~ 6. 2
 

D1 上下窜动误差 / μm 2 0 ~ 3、3~ 7

D2 俯仰角误差 / ( ″) 2 0 ~ 5、5 ~ 20

D3 偏摆角误差 / ( ″) 2 0 ~ 8、8 ~ 32

D4 左右窜动误差 / μm 2 0 ~ 2. 6、2. 6 ~ 6. 2

E1 上下定位误差 / μm 2 0 ~ 3、3~ 7

E2 左右定位误差 / μm 2 0 ~ 2. 6、2. 6 ~ 6. 2

E3 前后定位误差 / μm 4 0 ~ 5. 4、5. 4 ~ 11. 6、11. 6 ~ 18. 3、18. 3 ~ 27. 6
 

图 6　 定位误差预测模型

Fig. 6　 Localization
 

error
 

prediction
 

models

3　 多因素影响下工作台定位误差测量实验
与模型验证

3. 1　 多因素影响下工作台定位误差测量实验

　 　 本研究用工作台、高低温环境试验箱、伺服控制系统

和雷尼绍 XL-80 激光干涉仪搭建定位误差实验装置如

图 5 所示,当工作台运动到某一位置时,激光干涉仪测量

其位置信息,电脑记录定位误差数据。
由 1. 2 节分析知工作台定位误差与负载、速度、温度

有关,实验中通过施加 5、15、25 kg 不同质量砝码改变负

载大小,通过改变伺服电机编码器频率大小控制运动速

度大小,设置 1、2、5、10 mm / s;在高低温环境试验箱中设

置 20℃ 、40℃ 、60℃恒定温度改变环境温度大小。



　 第 11 期 李　 莉
 

等:基于动态贝叶斯网络的一维工作台定位精度损失预测 33　　　

负载、速度和温度设置对照组,实验条件如表 2 所

示,共设计 8 组实验进行定位误差测量。

表 2　 实验条件

Table
 

2　 Experimental
 

conditions

实验条件 负载 /
kg

运动速度 /

(mm·s-1 )
环境温度 /

℃

负载条件

速度条件

温度条件

5

15

25

15

15

5

1

2

5

10

5

20

20

20

40

60

　 　 工作台有效行程为 80 mm,每隔 4 mm 设置一个位置

测量点,共设置 21 个位置测量点,每个位置重复测量

3 次取平均值作为最终定位误差。 每隔 24
 

h 测量一次定

位误差数据,连续测量 30 天,得到不同实验条件下工作

台定位误差 30 天的误差数据。 由于实验设备的限制,本
文测得误差均为前后定位误差。 不同条件下的动态定位

误差如图 7 所示。

3. 2　 动态贝叶斯网络节点概率分配与先验概率分布

　 　 贝叶斯网络的先验概率分布是指整个网络中所有节

点变量的联合概率分布,节点的依赖关系通过条件概率

即根节点的先验概率和非根节点的条件概率表示。 为了

　 　 　

图 7　 不同实验条件下工作台动态定位误差

Fig. 7　 Dynamic
 

table
 

positioning
 

error
 

under
 

different
 

conditions

确保先验分布的客观性,本文根节点先验概率和条件概

率表通过数据驱动的方法得到,由实测误差数据进行数

理统计和参数学习确定。
1)根节点先验概率

根节点先验概率只考虑负载大小、负载位置、速

度、温度。 以 2. 1 节的 EM 算法估计条件概率。 为了满

足计算的样本量,在 8 组实验条件 30 天的定位误差数

据中,负载条件 1、速度条件 2、温度条件 3、温度条件 4
的误差数据用作节点条件概率的计算和训练,其余

4 组数据用于验证预测模型的有效性。 将网络模型影

响因素的数据集导入 GeNIe 软件中 data
 

analysis 模块

后,使用模块 fit
 

metalog
 

distribution 功能依次生成根节

点先验概率如图 8 所示,并将各节点域的概率输出结

果填到表 3 中。
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图 8　 根节点先验概率分布

Fig. 8　 Root
 

node
 

prior
 

probability
 

distribution

表 3　 根节点的先验概率

Table
 

3　 Prior
 

probability
 

of
 

the
 

root
 

node

节点 负载 A1 负载位置 A2 运行速度 A3 温度 A4

State0 0. 30 0. 22 0. 20 0. 16

State1 0. 33 0. 24 0. 28 0. 16

State2 0. 37 0. 26 0. 27 0. 68

State3 0 0. 28 0. 25 0

　 　 2)非根节点条件概率

根据建立的动态贝叶斯网络预测模型,通过 GeNIe
软件中 EM 结构算法学习功能对动态贝叶斯网络结构学

习,借助实验误差数据并结合专家经验优化动态贝叶斯

网络条件概率。 以滚珠接触与变形( B2 )节点为例,条件

概率如表 4 所示。
3)状态转移矩阵

对于动态节点,为了表示相邻时间切片之间的演变

规律,需构建状态转移概率矩阵。 以前后定位误差节点

为例,状态转移矩阵通过数据标定,将连续时间划分为时

间间隔为 24
 

h 的时间片段,即 Δt = 24
 

h。 状态转移矩阵

如表 5 所示。
3. 3　 动态贝叶斯网络预测

　 　 探究不同负载、速度、温度下工作台前后定位误差概

率随时间的变化情况,预测范围设为 30 个步长。 根据

图 6 动态贝叶斯网络预测模型,输入根节点的先验概

率、非根节点的条件概率,存在时间关联的节点输入状

态转移矩阵,通过 GeNIe 软件中的贝叶斯网络聚类推

理功能得到目标节点的后验概率即得到预测概率

　 　 　 　 表 4　 节点 B2 条件概率

Table
 

4　 Node
 

B2
 conditional

 

probability
 

负载重量 / kg 负载位置 State0 State1

5

15

25

1 0. 74 0. 26

2 0. 72 0. 28

3 0. 71 0. 29

4 0. 68 0. 32

1 0. 61 0. 39

2 0. 59 0. 41

3 0. 56 0. 44

4 0. 50 0. 50

1 0. 51 0. 49

2 0. 42 0. 58

3 0. 35 0. 65

4 0. 29 0. 71

表 5　 前后定位误差状态转移矩阵

Table
 

5　 Forward
 

and
 

backward
 

localization
 

error
 

state
 

transfer
 

matrix

P(NT
20 ) P(NT-1

20 ) I(T) II(T) III(T) IV(T)

I(T-1) 0. 897
 

7 0. 068
 

8 0. 007
 

4 0. 000
 

6

II(T-1) 0. 090
 

7 0. 821
 

4 0. 102
 

2 0. 008
 

9

III(T-1) 0. 011
 

0 0. 105
 

9 0. 852
 

6 0. 113
 

5

IV(T-1) 0. 000
 

6 0. 003
 

9 0. 037
 

8 0. 877
 

0
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曲线。 由于前后定位误差是一维工作台的关键指标,本
文以前后定位误差为例进行预测,验证预测方法的建模

精度。 工作台前后定位误差 4 个状态区间的预测概率曲

线如图 9 所示,其中横坐标为时间,纵坐标为误差区间

概率。
将图 9 中的前后定位误差概率曲线进行处理,将各

误差区间范围乘以各自状态区间的系数,如式(7)所示,
得到前后定位误差曲线。

δ( t) = ∑
j

i = 0
k ix i (7)

其中, j 为区间分段数量; k i 为概率;x i 为误差区间

范围。
为验证所提方法构建定位误差预测模型的预测性

能,将训练集 4 组条件的 30 天前后定位误差数据导入

到动态贝叶斯网络预测模型中训练,其余 4 组条件的

　 　 　 　

图 9　 前后定位误差预测概率曲线

Fig. 9　 Prediction
 

probability
 

curves
 

for
 

front-back
 

localization
 

errors

30 天前后定位误差数据作为测试集预测,重复步骤,利
用动态贝叶斯网络聚类推理算法得到前后定位误差预测

曲线,并与对应的实测误差曲线对比,如图 10 所示。

图 10　 4 组条件下前后定位误差预测与实测误差曲线

Fig. 10　 Comparison
 

curves
 

of
 

predicted
 

and
 

measured
 

forward
 

and
 

backward
 

errors
 

under
 

four
 

sets
 

of
 

conditions

　 　 对比图 10 这 4 组条件下前后定位误差预测与实测

曲线发现,总体均随时间的增加而增大,增大趋势相似,
波动小。 验证了动态贝叶斯网络预测模型的有效性。 部

分条件下误差相对较大的原因可能是网络模型中误差影

响因素的考虑不够精细化,实测训练数据集的波动特

性等。
前后定位误差预测与实测值的最大绝对误差与最大

相对误差如表 6 所示。

表 6　 最大误差比

Table
 

6　 Maximum
 

error
 

ratio

施加条件 最大绝对误 / μm 最大相对误差 / %

图 10(a) 1. 17 13. 471

图 10(b) 1. 63 11. 983

图 10(c) 1. 25 7. 116

图 10(d) 0. 91 10. 734



　 第 11 期 李　 莉
 

等:基于动态贝叶斯网络的一维工作台定位精度损失预测 37　　　

　 　 由表 6 知前后定位误差预测与实测值的最大绝对误

差为 1. 63
 

μm,最大相对误差为 13. 471% 。 说明动态贝

叶斯网络模型的预测数据与激光干涉仪的实测数据基本

吻合,进一步验证了预测模型的有效性。

4　 结　 　 论

　 　 为解决数控机床工作台使用过程中由于摩擦磨损造

成定位精度降低的问题,研究提出了一种基于动态贝叶

斯网络的一维工作台定位精度损失建模预测方法,建立

多因素影响的工作台定位误差预测模型,通过对比相应

条件下的实测与预测定位误差,验证所提方法构建预测

模型的有效性。 通过研究得到的结论为:
1)通过工作台的结构组成分析得到误差源组成。 根

据建立的工作台精度损失理论模型,得到负载、速度、温
度和时间是工作台定位误差的主要影响因素。

2)分析不同实验条件下测量得到的前后定位误差数

据云图发现工作台定位误差受负载、运动速度和温度的

共同影响,验证了理论模型的正确性。
3)根据工作台定位误差节点变量的因果关系,引入

时间维度构建多因素影响下的定位误差动态贝叶斯网络

预测模型,利用动态贝叶斯网络的聚类推理算法划分

30 个时间片实现工作台前后定位误差预测,将预测结果

与实测数据对比验证。 结果表明,测试集四组条件下的

前后定位误差预测与实测总体变化趋势相似,两者最大

绝对误差为 1. 63
 

μm、最大相对误差为 13. 471% ,验证了

动态贝叶斯网络预测模型的有效性。 说明该模型可以精

确获得各个测量时刻的动态误差,为数控机床加工精度

的预测奠定基础。
由于温控箱内部空间狭小的限制,因此无法开展负

载作用在不同位置的定位误差测量实验,后续研究者应

在条件允许下继续进行。 由于数据样本有限,当前该模

型实现形式在数据驱动维度存在局限,后续将进一步探

究深度融合物理机理与数据特征的混合预测模型,实现

长期服役过程中对任意时间节点,复杂工况组合下进行

高精度定位误差预测,使模型具有更强的适用性。
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