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摘　 要:随着运营商网络规模的快速扩展,网络运维复杂性和风险日益增加,传统的依赖人工经验分析的运维模式,在应对大规

模网络配置变更、新技术部署及业务快速上线等场景时,已难以满足高效、低风险的需求。 数字孪生技术通过构建物理网络的

虚拟映射,为降低运维成本与风险提供新路径。 然而,现有网络数字孪生实现面临仿真保真度与规模难以兼顾、动态响应滞后

的核心挑战。 为此,提出一种“数据驱动+仪器仿真+大模型验证”的仪器大模型技术体系:该体系利用高精度网络仪器保障孪

生仿真的规模扩展性、协议保真度以及可观测性;并基于大模型驱动“仿真-测量-优化”的闭环反馈,实现仿真配置的自动生

成、验证任务的智能解析与运维策略的实时调优。 与传统仿真器或数学抽象方法相比,首次在网络数字孪生应用中实现了网络

仪器仪表高仿真测量能力与大语言模型动态决策调整的深度协同,构建了完整的感知、决策、执行闭环,有效解决了仿真保真度

与规模不可兼得、动态响应滞后的网络数字孪生核心难题。 结果表明,该方法能够将网络配置变更、业务部署等关键运维场景

的验证周期从传统模式下的“周级”大幅缩短至“小时级”,网络运维整体生产效率提升约 40% ,为超大规模运营商网络的智能

化运维与自动化保障建立了新的技术范式。
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Abstract:With
 

the
 

rapid
 

expansion
 

of
 

carrier
 

network
 

scales,
 

the
 

complexity
 

and
 

risks
 

of
 

network
 

operations
 

continue
 

to
 

escalate,
 

making
 

traditional
 

operation
 

models
 

inadequate
 

for
 

meeting
 

the
 

demands
 

of
 

efficient
 

and
 

low-risk
 

network
 

changes.
 

While
 

digital
 

twin
 

technology
 

has
 

emerged
 

as
 

a
 

promising
 

solution
 

through
 

virtual-physical
 

network
 

mapping,
 

extant
 

implementations
 

still
 

face
 

fundamental
 

limitations:
 

the
 

fidelity-scale
 

tradeoff
 

in
 

simulations
 

and
 

latency
 

in
 

dynamic
 

responsiveness.
 

This
 

paper
 

introduces
 

an
 

instrumentation-enhanced
 

large
 

model
 

( IELM)
 

framework,
 

integrating
 

data-driven
 

modeling,
 

instrumented
 

simulation,
 

and
 

large-model
 

verification.
 

The
 

proposed
 

approach
 

leverages
 

network
 

instrumentation
 

to
 

ensure
 

scalable
 

high-fidelity
 

emulation
 

and
 

observability
 

of
 

digital
 

twin
 

simulations.
 

Meanwhile,
 

large
 

language
 

models
 

( LLMs )
 

power
 

a
 

closed-loop
 

simulation-measurement-optimization
 

cycle—enabling
 

autonomous
 

configuration
 

generation
 

and
 

real-time
 

policy
 

refinement.
 

Validated
 

in
 

China
 

Mobile′s
 

network
 

digital
 

twin
 

system,
 

IELM
 

achieved
 

large-
scale

 

network
 

twin
 

pre-verification.
 

It
 

reduced
 

validation
 

cycles
 

for
 

configuration
 

changes
 

and
 

service
 

deployments
 

from
 

weeks
 

to
 

hours,
 

improving
 

network
 

operation
 

efficiency
 

by
 

approximately
 

40% .
 

This
 

research
 

establishes
 

a
 

new
 

paradigm
 

for
 

intelligent
 

network
 

assurance
 

in
 

hyper-scale
 

carrier
 

environments.
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0　 引　 　 言

　 　 近年来,随着通信技术和互联网服务的飞速发展,运
营商网络规模迅速扩张,结构日益复杂。 传统人工运维

方式难以应对复杂网络环境带来的风险与挑战,网络配

置更新和新技术部署过程中的误操作风险可能导致服务

中断或性能下降,给企业带来巨大损失。 因此,如何高效

进行网络管理和优化成为亟待解决的问题。 在此背景

下,“网络数字孪生” 概念应运而生,其通过构建物理网

络的数字镜像模型,高保真复现网络拓扑、配置和流量等

状态,为网络规划、 优化和运维保障提供支撑平台。
ITU-T

 

FG
 

Network
 

2030(2019)将数字孪生列为未来网络

十大典型用例;IEC
 

TC57
 

WG10 / WG17 在智能电网能源

管理系统(smart
 

grid
 

energy
 

management
 

system,
 

SGEMS)
框架中推进跨领域孪生互操作;TM

 

Forum 发布《 Digital
 

Twin
 

for
 

Networks》框架,提出开放数字架构( open
 

digital
 

architecture,
 

ODA ) 与 孪 生 协 同 模 型; IETF
 

NDT
 

BoF
(2024)启动对网络数字孪生的数据模型与接口的讨论;
学术界也在探索数字孪生在网络中的应用架构和关键技

术,例如利用分层模型实现物理网络与虚拟孪生的实时

映射与交互等[1-4] 。 本文提出的大模型与网络测量仪器

的协同架构,为网络数字孪生的构建提供“大规模仿真-
高精度测量-动态优化”的闭环反馈,能够显著提高网络

数字孪生构建和验证的效率。
网络数字孪生是对物理网络在空间上 1 ∶1映射、时

间上准实时同步、逻辑上数据驱动的虚拟镜像。 中国通

信 标 准 化 协 会 ( China
 

Communications
 

Standards
 

Association,
 

CCSA)形成的 YD / T《数字孪生网络架构及

技术要求》中根据数字孪生网络的定义和 4 个核心要素,
提出“三层三域双闭环”

 

架构:“三层” 指构成数字孪生

网络系统的物理网络层、孪生网络层和网络应用层;“三

域”指孪生网络层数据域、模型域和管理域,分别对应数

据共享仓库、服务映射模型和网络孪生体管理 3 个子系

统;“双闭环”是指孪生网络层内基于服务映射模型的内

闭环仿真和优化,以及基于 3 层架构的外闭环对网络应

用的控制、反馈和优化[5-8] 。
其中对于孪生网络层的模型构建业界常用三大类

方法:基于网络仿真器的构建方法、基于 NFV、容器等

虚拟化技术构建方法以及基于数学抽象方法构建基础

模型的方法。 以上 3 类方法在实际应用中存在诸多挑

战,即:
1)保真度与规模难以兼顾:以 NS-3 为代表的网络仿

真器和网络设备厂商提供的虚拟路由器都是利用虚拟化

技术生成虚拟的网络环境,通过模拟网络的运行状态和

行为对网络进行预测和分析;虽然能实现设备级仿真,但

基于网络仿真器的构建方法和基于虚拟化技术构建方法

以牺牲规模扩展性与业务完整性为代价,导致其仅适用

于小范围静态验证( <200 节点),无法支撑大规模动态网

络的全景孪生构建与验证。
2)模型构建复杂度高、场景适应性有限:基于数学抽

象方法构建方法基于验证目标做形式化建模和求解,具
备资源消耗低、扩展性强等特点。 但对于复杂运营商网

络,由于其网元形态、拓扑连接、路由协议、流量模型、业
务类型等元素多样,且不同元素之间存在复杂的关联性,
难以通过纯数学模型和计算实现高精准模拟。 同时由于

不同网络的业务需求差异较大,形式化数学抽象方法难

以适应通用网络场景,通常只能针对特定场景进行定制

建模,限制了该方法在实际网络运营及孪生场景的应用

和推广[9-11] 。
针对上述方法的缺陷,本文第 3 章设计了对比实验,

即:
1)以数学抽象方法为基准,验证结合仪器大模型在

拓扑重建匹配率、协议状态还原度的优势;
2)对比网络仿真器方案,证明本文方法在业务流量

仿真匹配率、动态响应精度上的优势。
针对当前网络数字孪生构建中保真度与规模难以兼

顾、模型构建复杂度高、场景适应性有限、动态响应滞后

等技术挑战,提出了一种创新的网络数字孪生架构,首次

将网络测试仪器的高精度测量能力与大模型动态决策相

结合,构建闭环反馈的网络数字孪生系统,实现的核心贡

献包括:
1)网络数字孪生架构创新设计:以解决运营商现网

实际问题为导向,精准聚焦大规模网络中方案验证类场

景的“操作、模拟、验证”核心需求,提出融合大模型与网

络仪器仪表的协同数字孪生框架,结合孪生仿真、验证推

演等技术方法,通过引入网络仪器、实现孪生数据与包括

网络仪器在内的各类仿真资源的映射提升网络仿真精确

度,实现网络状态的高保真数字孪生设计。
2)网络数字孪生关键技术开发:利用大模型强大

的推理与学习能力[12-14] ,结合知识增强生成、参数高效

微调技术,理解孪生验证任务,实现对孪生数据高效映

射、动态生成孪生所需要的仪器仿真配置与优化方案,
显著增强了数字孪生系统在复杂网络环境下的工程适

用性[15-18] 。
3)网络数字孪生方案现网验证:将本文所提出的网

络数字孪生方案在中国移动数据承载网络的新技术和方

案部署验证,在省网路由安全策略配置、骨干网 SRv6 多

路径调度业务部署等运营商网络重要运维场景取得了优

异的实践效果,显著缩短了网络运维验证用时达 40% ,并
将复杂的大规模网络仿真验证周期从过去的数周减少到

数小时内完成,体现了架构的高效性与实用性。
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1　 系统架构与理论分析

1. 1　 网络数字孪生方法

　 　 网络数字孪生以仿真验证为核心的孪生方法,其实

现思路和关键技术为:
1)孪生仿真:基于网络配置与网络拓扑数据,高精度

还原网络路由、流量路径、负载分布等关键网络信息,基
于这些关键数据可进一步检查网络韧性、变更潜在风险、
设计 / 变更意图满足度等。

如图 1 所示,定义一个 IP 网络的孪生模型和仿真行

为包含如下 4 个维度,即:
(1)Type:网络元素类型,是描述网络元素原型的元

模型,可以是网元类型:如路由器、交换机、防火墙等;链
路类型:如物理链路、IP 链路等;流量类型:如单播、组播

等;负载类型:如链路负载、全局负载等。
(2)Object&Capability:是描述网络元素实体对象和

网络能力范围的模型,比如网络实体包括拓扑、网元、
链路、路由等;网络协议能力包括边界网关协议( border

 

gateway
 

protocol,
 

BGP ) 、 中 间 系 统 到 中 间 系 统 协 议

( intermediate
 

system
 

to
 

intermediate
 

system
 

protocol,
 

ISIS) 、开放最短路径优先协议( open
 

shortest
 

path
 

first
 

protocol,
 

OSPF) 、多协议标签交换 ( multiprotocol
 

label
 

switching,
 

MPLS ) 、 基 于 IPv6 的 分 段 路 由 ( segment
 

routing
 

over
 

IPv6,
 

SRv6) 、路由策略、流策略、安全策

略等。
(3)Configuration:主要指孪生网络配置,是描述具体

孪生网络详细信息的模型[19] 。
(4)Actor:是网络实体(如 BGP 协议进程实体、ISIS

协议进程实体等)执行的行为模型。

图 1　 IP 网络仿真模型

Fig. 1　 IP
 

network
 

simulation
 

model

2)验证推演:如图 2 所示,可以采用形式化建模方法

进行网络模型的向量化建模,结合数学抽象算法完成网

络验证,支持可达性、路由黑洞、路由环路、路由冲突、路
由变化、路径变化等场景的行为推演。

对于如负载超限、业务主备保护等更复杂的业务验

证场景,可以基于图 1 中 IP 网络仿真模型,构建离散事

件驱动(discrete
 

event
 

system,
 

DES)的高并发计算架构,
将网络实体进程虚拟化为 Actor 行为实体,靠消息驱动的

方式完成全网离散并发计算,推演网络关键行为。

图 2　 网络形式化建模验证

Fig. 2　 Formal
 

network
 

modeling

1. 2　 集成网络仪器的网络孪生方案

　 　 无论是基于网络仿真器 / NFV / 容器等虚拟化技术的

构建方案,还是基于数学抽象方法构建基础模型的方案,
在大规模网络孪生、业务 / 流量孪生精准还原上存在显著

短板,难以真实反映现实网络的动态性与复杂性。 为了

突破该技术挑战,如图 3 所示本文创新引入软硬件协同

仿真能力,将各类软硬件仿真能力进行融合,并深度集成

高精度网络测试仪器,形成高保真网络孪生方案[20-21] 。
通过在孪生仿真的 Object&Capability 模型中增加“仿真

类型”字段,用以标识每个网络实体对象的驱动主体为物

理设备、虚拟设备、仿真器或网络仪器。

图 3　 集成网络仪器的孪生方案

Fig. 3　 Digital
 

twin
 

architecture
 

with
 

integrated
 

network
 

testing
 

instruments

方案根据标识的“ 仿真类型” 实现动态对象驱动,
系统自动生成相应的物理设备配置、虚拟设备配置、仿
真器配置或调用特定网络仪器的配置接口;通过将虚

拟对象叠加到物理环境拓展数字孪生验证维度,既可

以利用物理设备 / 虚拟设备的局部真实操作 / 响应、又
可以利用网络仪器的强大能力,实现大规模拓扑精准

还原、复杂业务场景重建以及精细化损伤设置等关键

仿真行为,有效弥补了纯虚拟设备或仿真器在规模与

资源效率上的短板[22] 。
如表 1 所示,方案所集成的网络仪器包括且不限于

如下 4 个类型,即:
1) IP 网络测试仪 ( 如 Spirent

 

TestCenter,
 

Keysight
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Ixnetwork):用于大规模拓扑仿真(模拟数千节点)、高精

度流量生成与注入、支持线速流量、互联网混合流量模型

(Internet
 

mix
 

traffic
 

model,
 

IMIX)、以及网络性能(吞吐、
时延、丢包率)测量。

2)网络损伤仿真仪(如 Spirent
 

ANUE):用于模拟

真实网络中的各类网络损伤 ( 时延、抖动、丢包、带宽

限制)。
3)应用安全仪表( Keysight

 

BPS):用于模拟业务流

量和 安 全 攻 击 场 景, 包 括 分 布 式 拒 绝 服 务 攻 击

(distributed
 

denial
 

of
 

service,
 

DDoS)、恶意流量等。

表 1　 网络仪器仪表能力

Table
 

1　 Main
 

capabilities
 

of
 

network
 

testing
 

instruments

能力模块 仿真功能

网元仿真
模拟终端(主机 / IP)、路由器 / 交换机、SDN / NFV
虚拟节点

协议仿真

基础协议( IPv4 / IPv6、TCP / UDP、DHCP 等)、路由

协议( OSPF、 BGP、 SRv6 等)、应用协议 ( HTTP /
HTTPS、DNS、互联网语音协议( voice

 

over
 

internet
 

protocol,
 

VoIP)等)、加密协议(互联网协议安全

(internet
 

protocol
 

security,
 

IPsec)、传输层安全协

议(transport
 

layer
 

security,TLS)等)

业务流量仿真
固定 / 递增 / IMIX 帧长,多模式流量收发(持续 / 突
发),流量回放

损伤 / 攻击仿真
时延、抖动、丢包、带宽限制;DDoS、恶意代码、攻
击逃逸

测量与评估 吞吐、时延 / 抖动、丢包率、乱序、错包等

　 　 这 些 仪 器 通 过 应 用 程 序 编 程 接 口 ( application
 

programming
 

interface,
 

API) 接口被孪生系统统一调度,
为网络数字孪生提供了高保真仿真的核心能力。

通过将 IP 网络测试仪、网络损伤仪等网络仪器深度

融入网络孪生架构,设计基于“仿真类型”的动态调度机

制,结合仪器的高精度仿真与测量能力以及与虚拟设备

的互通性,使得在大规模环境下进行高保真、低成本的网

络验证与闭环优化具备可行性,能有效解决现有网络数

字孪生技术在规模与精度上的核心短板[23-24] 。
“仿真类型”字段为枚举值:[ PHY_DEVICE,

 

VIRT_
DEVICE,

 

EMULATOR,
 

INSTRUMENT],并设置对应类型

驱动模型 Model:[物理设备 / 仿真节点 / 仪器类型],系统

仿真引擎通过解析该字段,可准确调用对应驱动模型,生
成设备配置 / 仪器 API 指令,最后执行仿真。
1. 3　 仪器大模型提高孪生和验证效率

　 　 在集成网络仪器的网络孪生方案中,复现真实业务

场景需建模解析物理环境中网络拓扑、协议及业务参数

并进行仪器配置调优,耗时费力且依赖专家经验。 网络

运维人员在部分复杂业务 / 流量模型与仪器仿真交互原

理的领域知识缺失,可能导致复杂场景难以精准模拟,制
约仿真验证效率[25] 。

如图 4 所示的基于大模型和仪器仿真的孪生架构

中,仿真模型和测量模型代表了孪生网络层中调用各类

软硬件仿真能力实现仿真验证,以及对仿真验证过程进

行测量并得到的关于网络基准、路径感知、网络感知等结

果信息,而仪器大模型则可以结合仪器仿真模型、高精度

测量模型,基于大语言模型( large
 

language
 

model,
 

LLM)
的海量数据学习和推理能力,为网络孪生场景动态生成

仪器仿真配置和操作[26-27] ,实现 3 点功能特性:
1)多模态数据泛化处理:快速整合拓扑、流量日志、

协议报文等多模态异构数据,自动补齐采集中缺失 / 错误

信息,构建完整网络信息画像;
2)动态配置自动生成:将网络参数智能映射为可执

行的标准仪器配置(如损伤参数、流量模板、协议栈规则

等),消除人工编码误差,确保其在网络仿真仪器上能够

准确、高效地运行;
3)基于自然语言的意图驱动:基于自然语言理解,直

接生成仿真仪器操作,缩短孪生验证时间[28] 。

图 4　 基于大模型和仪器仿真的孪生方案

Fig. 4　 Network
 

twin
 

system
 

based
 

on
 

large
 

models
 

and
 

instrument
 

simulation
 

technology

仪器大模型作为大模型与仪器仿真结合的关键引

擎,是一个具备网络仪器操作与仿真分析能力的专用大

模型,其核心作用是桥接自然语言意图与仪器仿真 / 操
作,将抽象孪生验证需求转化为可执行、可分析的仿真

任务。
本文提出的网络数字孪生输入为网络信息采集的多

源异构数据,而模型数据映射过程创新性地融合了仪器仿

真与大模型:仪器负责高保真仿真与精准测量,大模型则

承担需求场景解析、仪表配置生成与仿真操作;系统的输

出为可直接指导运维的预验证结果,实现网络数字孪生从

“人工配置”到“意图驱动”、从“单点模拟”到“协同仿真”、
从“人工算法分析”到“智能过程洞察”的创新应用。
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2　 关键技术与方法

　 　 如图 5 所示,基于采集到的网络信息,将适配的大模

型深度融入仪器仪表工作流,实现三大功能特性提升,
即:

1)智能特征解析:识别出网络信息关键特征和模式,
如拓扑链路连接关系、流量特征、网络协议的特征字

段等;
2)动态场景自适应生成:通过自动补全缺失参数,生

成业务场景,输出仪器参数 / 配置;
3)验证推演优化:在孪生验证过程中,结合仪器反馈

的实际测量结果优化仿真操作参数,例如,ISIS 协议状态

down 触发大模型重新推理调整协议参数,迭代后协议状

态恢复正常。

图 5　 仪器与大模型协同机制

Fig. 5　 System
 

architecture
 

of
 

instrument
 

and
 

large
 

model

2. 1　 基于 RAG 与 PEFT 的仪器大模型构建方法

　 　 基于基座大模型的通用能力,可以通过知识增强生

成(retrieval-augmented
 

generation,
 

RAG)与参数高效微调

(parameter-efficientfine-tuning,
 

PEFT)技术实现仪器领域

深度适配:
1)技术路线 1:RAG(知识增强生成)
如图 6 所示,RAG 的知识库构建与检索实现包括:
(1)专业文档结构化处理:对仪器操作手册、仿真案

例库、行业标准语最佳实践、协议规范库、故障案例库、设
备配置模板、协议规范等文档进行语义分块( Semantic

 

Chunking),可采用例如重叠窗口策略 ( Window
 

Size =
512

 

tokens,Overlap=64
 

tokens)保持上下文完整性。
(2)多模态向量化建模:使用领域优化嵌入模型(如

text-embedding-3-large 经网络测试语料微调),将文本、配
置代码片段(如 TCL 测试脚本)、拓扑示意图同步编码为

多维向量。
(3) 混合检索架构: 构 建 分 级 向 量 数 据 库 ( 如

Pinecone),支持元数据过滤:按设备型号、协议类型快速

缩小检索范围; 语义相似度检索: 基于余弦相似度

(Cosine≥0. 82)匹配历史测试案例。
(4)动态推理机制:当用户提交验证需求(如“验证

100 G 链路故障倒换性能” ) 时,可构建多级 Prompt 工

程框架、思维链( Chain-of-Thought) 技术引导模型生成

结构化输出:使能 100 G 环境→生成 SRv6
 

Policy
 

→发

布 VPN 路由→生成 VPN 流量→模拟部分隧道故障,根
据思维链自然语言映射→仪器指令生成可执行仿真

配置。

图 6　 仪器大模型 RAG 技术示意图

Fig. 6　 Schematic
 

diagram
 

of
 

instrument
 

AI
 

large
 

model
 

RAG
 

technology

2)技术路线 2:PEFT(参数高效微调)
基于采集的真实网络数据对大模型进行训练微调,

输出更贴合实际网络环境的仪器配置方案[29-30] 。
如图 7 所示,参数微调方案关键实现包括:
(1)构建领域语料规范:数据格式标准化,采用 JSON

格式封装训练样本,此外建立质量管控机制,建立三级校

验规则 ( 语法合规性检查、 协议语义验证、 设备约束

匹配)。
(2)训练策略优化:一方面采用低秩适配( low-rank

 

adaptation,
 

LoRA),在基座模型( Llama3-70B) 注入秩为

64 的适配矩阵,微调参数量仅占 0. 15% (110 M / 70
 

B);
另一方面,渐进式领域迁移,如表 2 所示采用课程学习

(Curriculum
 

Learning)策略,从基础配置生成任务逐步过

渡到复杂多协议仿真场景[31] 。

图 7　 仪器大模型微调技术示意图

Fig. 7　 Schematic
 

diagram
 

of
 

instrument
 

AI
 

large
 

model
 

fine-tuning
 

technology
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表 2　 PEFT:渐进式领域迁移

Table
 

2　 PEFT:
 

Progressive
 

domain
 

transfer

阶段 训练数据 目标能力

1 仪器基础配置 生成正确配置

2 多协议叠加配置 理解协议配置依赖关系

3 不同厂商协议参数实现 解决多厂商兼容性问题

2. 2　 仪器与大模型的协同工作方法

　 　 如表 3 所示,根据仪器大模型实现目标构建 2 个任务:
实验方案设计要素包括:
1)基础模型:Llama3-70B

表 3　 两个核心场景任务

Table
 

3　 Two
 

scenario
 

tasks

任务 场景任务 1 场景任务 2

输入 自然语言需求+孪生数据 孪生数据信息

输出 仪器仿真场景 / 参数 仪器仿真代码与配置

技术目标 保障孪生场景完整性 驱动高保真网络 / 业务 / 流量仿真

　 　 2)评估指标: 配置准确率、 采用 双语评估替 补

(bilingual
 

evaluation
 

understudy,
 

BLEU)-4、协议合规性。
3)对比方案:基础模型 / RAG / PEFT
实验结果分析如表 4 所示。

表 4　 不同技术方案的性能对比

Table
 

4　 Performance
 

comparison
 

of
 

different
 

technical
 

solutions

指标 基础模型 RAG 方案 PEFT 方案

配置准确率(BLEU-4) / % 52 78 85

协议合规条款数 12 / 18 17 / 18 15 / 18

　 　 实验结果表明在知识有效性和领域适配度两个领域

均有显著成效:
1)知识时效性:RAG 方案通过实时检索最新协议规

范,协议合规性较基础模型提升 25% (受限于知识库覆

盖度),无需模型重训练,知识更新时效性强,适合仿真配

置参数生成。
2)领域适配度:PEFT 方案在配置准确率上表现较

优,显示微调能有效捕获网络配置的领域特征,在仪器参

数配置中的协议逻辑校验领域具有良好表现,但依赖特

定训练数据集,且需要消耗更高的训练成本。
尽管大模型为仪器仿真配置生成提供了强大的动态

决策能力,但仪器配置具有高度专业性与碎片化特征(如

多厂商与仪器适配差异、私有协议扩展等),会较大程度

上影响仪器仿真效率[32] 。 如图 8 所示,本文通过 RAG
与 PEFT 协同适配的路径来构建仪器大模型:

图 8　 RAG 与 PEFT 的结合示意图

Fig. 8　 Combination
 

of
 

RAG
 

and
 

PEFT

1)RAG 即时纠偏:当用户请求涉及新协议(如 SRv6
 

Policy)时,RAG 从知识库检索 IETF 草案、厂商配置手册

等,防止模型产生幻觉虚构参数。
2)PEFT 深度泛化:通过渐进式课程学习,模型逐步

掌握多厂商配置差异,解决异构网络仪器孪生的泛化性

不足的缺陷。
3)实时协同输出:RAG 与 PEFT 输出经一致性仲裁

器比对,确保输出有效仪器配置。
通过结合两者的优势,如表 5 所示 BLEU-4 达 91%

(接近运维专家水平),协议合规性 100% ,且相较于传统

PEFT 方案,数据需求下降约 30% ,可以为基于大模型的

仪器仿真提供更高效的解决路径。

表 5　 RAG+PEFT
 

性能对比

Table
 

5　 Performance
 

comparison
 

of
 

RAG+PEFT

指标 RAG 方案 PEFT 方案 RAG+PEFT 方案

配置准确率(BLEU-4) / % 78 85 91

协议合规条款数 17 / 18 15 / 18 18 / 18

3　 实验设计与结果分析

　 　 为了进一步验证方案的有效性,本文基于真实网络环

境构建实验平台,系统评估大模型驱动的仪器仿真对网络

数字孪生系统在精度提升与效率优化方面的作用机制。
具体实验步骤为:1)针对运营商两类典型网络场景构建贴

近真实网络规模及业务特征的实验环境;2)构建网络数字

孪生系统的实验实施方案;3)通过对比引入大模型技术前

后的仿真实验数据,从仿真运行效率、结果准确性及模型

一致性 3 个维度展开定量分析,系统论证基于大模型的仪

器仿真技术在网络数字孪生领域的应用价值。
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3. 1　 实验环境与场景

　 　 1)场景 1:运营商省网场景设备配置方案实验。
该实验场景面向运营商省网开展数字孪生仿真验

证,目标是验证对省网设备进行针对性配置部署、业务割

接等操作的有效性。 本文以对省网核心节点开展 BGP
路由安全策略配置为例。 如图 9 所示,运营商省网一般

涵盖省网核心网及城域网,实验场景 1 设计包括 503 台

网络设备,包括核心路由器、汇聚路由器、接入设备等。
实验环境包括网络数字孪生系统、1 台真实高端路由器、
若干台虚拟路由器以及 IP 网络测试仪器。 数字孪生系

统通过统一数据接口从某省实际网络采集拓扑、配置、路
由等数据,在实验室环境对省网进行数据处理、高保真网

络模型重建。 IP 网络测试仪器用于对相关网络节点和

拓扑、协议的仿真,以及产生正常、异常业务流量,并对发

生变更的骨干设备 BGP 路由安全策略进行验证。

图 9　 实验场景 1 组网示意图

Fig. 9　 Schematic
 

diagram
 

of
 

scenario
 

1’s
 

network

图 10　 实验场景 2 组网示意图

Fig. 10　 Schematic
 

diagram
 

of
 

scenario
 

2’s
 

network

2)场景 2:运营商骨干网业务部署方案实验。
该场景针对运营商骨干网,以进行 SRv6 多路径路由

调度技术部署为例进行实验验证。 如图 10 所示,场景 2
实验网络包含 455 台设备,拓扑连接关系更为复杂,具有

多条等价路径和路由。 场景 2 实验环境组成与场景 1 基

本相同, 场景 2 通过网络数字孪生系统重建了包含

454 个节点、3
 

624 条链路、40 条 SRv6 隧道的骨干网虚拟

镜像。 为真实模拟多厂商组网,该孪生实验床中部署了

多台华为、新华三等真实设备厂商的虚拟路由器节点。
表 6 汇总了两个实验场景的主要环境。

表 6　 两个试点的主要部署环境

Table
 

6　 Main
 

deployment
 

environment

实验场景 省网 骨干网

现网规模 503 台设备、2
 

000 条链路 455 台设备、3
 

624 条链路

孪生数据
拓扑、配置、 BGP 路由安

全策略

拓扑、配置、 SRv6 隧道、多

路径拓扑

物理 / 虚拟

设备

1 台华为 NE5000E 高端

路由器、2 套华为虚拟路

由器

2 台华为 NE5000E 高端路

由器、 2 套华为虚拟路由

器、2 套新华三虚拟路由器

网络仪器
仿真模拟其余 500 节点

及拓扑

仿真模拟其余约 450 节点

及拓扑

3. 2　 实施流程

　 　 两个场景的实验均按照“数据采集→配置生成→仿

真验证→反馈优化”的流程实施网络数字孪生构建与方

案验证,并在此过程中引入大模型与网络仪器协同机制

以提升孪生仿真的效率和精确度。 图 11 概括了网络数

字孪生的主要实施步骤和关键环节,主要包括 3 个流程:

图 11　 数字孪生网络实施流程

Fig. 11　 Implementation
 

process
 

of
 

digital
 

twin
 

network

1)现网数据采集与孪生重建:网络数字孪生系统通

过统一接口批量拉取现网拓扑、配置、协议状态和基线流

量,并生成一套初始孪生配置。 执行机据此在实验床中

同时调度实体路由器与虚拟节点,快速搭建与现网一致

的高保真网络,为后续实验奠定基础。
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2)仿真场景执行与仪器协同:重建完成后,大模型按

验证需求(路由安全或 SRv6 调度)自动生成配置变更与

流量脚本:路由安全策略场景统一输出策略清单,SRv6
调度场景生成正常、异常或复合流量。 网络数字孪生系

统平台将仿真场景下发至执行机,并控制相关设备和仪

器启动仿真网络及协议;仪器同时按脚本注入流量并实

时上报仿真数据。 大模型据此动态调整流量模型,确保

实验网络流量覆盖所有关键路径及业务。
3)结果分析与闭环优化:网络数字孪生系统平台收

集路由与流量数据后,自动比对预期指标。 例如在场

景 1 中判定恶意路由是否被拦截,对设备所配置的 BGP
路由安全策略是否正常生效;在场景 2 中评估 SRv6 多路

径的链路利用率与收敛时延是否正常。 若发现策略缺漏

或算法欠佳,大模型给出参数优化建议(如补充安全策略

条目的描述、调整 SRv6 路径权重等),循环迭代,直至各

项指标达标,满足网络运营需求。
3. 3　 实验验证案例

　 　 1)场景 1:省网路由安全策略配置验证

路由安全策略关系到公网路由通告与传播的安全

性,防止 BGP 路由泄漏、非法前缀注入等对网络造成危

害。 场景 1 实验对此进行了全面的网络数字孪生验证:
利用重建的省网孪生网络,对现网中的 BGP 路由安全配

置进行自动识别和有效性测试,并预演策略调整对网络

的影响。 实验首先验证了孪生网络重建的完整性:通过

503 个节点、1
 

682 条链路的仿真网络,准确再现了某省

网的拓扑和路由状态。 接着,系统对设备路由安全策略

进行自识别和匹配:大模型从各设备配置中提取出 BGP
路由策略(如前缀过滤列表、路由策略规则等),统一格

式呈现并与预期的安全方案基线比对,快速发现配置不

一致之处。 例如,系统识别出某些边界路由器缺失特定

前缀过滤条目,存在潜在安全隐患。 随后,借助数字孪生

环境进行了路由安全策略下发及调整验证,通过孪生执

行机在虚拟环境中试验性地下发策略变更(如增加缺失

的过滤规则或修改策略顺序),观察对路由收敛和流量的

影响。 仪器产生的正常、异常实验流量结果表明:新增策

略后,原本可能泄漏的路由更新包被成功拦截,异常流量

无法通过,验证了配置方案的有效性。
在此过程中,网络数字孪生系统还发现了一项网络

安全隐患:在不当的操作顺序下调整 BGP 安全策略可能

触发短暂路由泄漏。 具体来说,当运维实施删除旧的安

全策略前缀列表再添加新的前缀列表时,在操作间隙内

路由器会出现瞬时的策略真空,导致原本应被过滤的路

由通告短暂进入。 这一现象在孪生仿真中因仿真路由

数、流量速率指标的异常突增行为被实时捕获。 基于仪

器大模型技术,系统会根据实验数据生成分析报告,并智

能反馈建议采用安全的变更步骤(如先添加新策略再删

除旧策略)来规避此类风险,有效降低了现网实施配置变

更时发生路由泄漏事故的可能性。
同等条件下,使用网络仿真器仿真规模无法满足该

场景验证需求,而使用数学抽象方法的孪生仿真成效差

距显著。 表 7 对比了不同网络孪生方案的优劣。

表 7　 使用仪器大模型技术前后的差异(场景 1)
Table

 

7　 Differences
 

before
 

and
 

after
 

using
 

the
 

large
 

model
 

(scenario
 

1)

指标 数学抽象方法
基于仪器大模型技术

(验证次数 n= 5)

验证总耗时
17 天 ( 设计数学模

型和验证目标)
≈4

 

h(自动数据解析、快速

仿真验证)

参与人员
3 名算法专家,建模

分析与验证
1 名网络工程师,自动完成

拓扑重建匹

配率

91% (部分拓扑数据

收集遗漏)
≈100% (智能补全确保完

整重现)

协议状态匹

配率

86% (缺乏协议状态

仿真,导致协议状态

不完整)

≈100% (策略一致,仿真路

由状态高度吻合)

网络流量仿

真匹配率
0% ,无网络流量

95% (基于现网数据生成流

量,更接近真实分布)

配置验证能

力

难以发现瞬态配置

错误

通过仪器仿真模拟和高精

度网络流量监测发现动态

配置漏洞

　 　 综上,场景 1 实验表明:基于大模型的仪器仿真的网

络数字孪生方案不仅解决了数学抽象方法“ 无流量仿

真”的盲区,更突破了网络仿真器的规模瓶颈,在 500+节
点规模下实现了逼近 100% 的协议状态匹配与 95% 的流

量仿真匹配,并精准捕捉到人工评审难以发现的“策略真

空期”瞬态风险。
2)场景 2:骨干网 SRv6 多路径调度业务部署验证

SRv6 多路径调度技术通过在 IPv6 分段路由( SRv6)
中灵活选择多条转发路径,达到均衡负载和提高网络可

靠性的目的。 场景 2 骨干网 SRv6 技术部署实验,借助网

络数字孪生,对多路径调度技术在现网部署前进行了深

入的可行性验证。 首先,网络数字孪生系统重建了骨干

网的多路径拓扑,共模拟了所需的 455 个节点和多达

3
 

624 条链路,准确呈现相关业务部署涉及的骨干网络。
在此基础上,研究团队开发的 SRv6 多路径调度算法集成

进网络数字孪生平台,用于根据网络流量动态选择最佳

路径。 该实验重点孪生验证了 2 个流程:
(1)流量路径优化:在网络无故障且业务稳定时,算

法根据各骨干网络链路的利用率自动计算多条 SRv6 隧

道的最优承载路径。 当监测到某些链路出现高负载且利
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用率不均时,算法能及时调整部分流量至较空闲的链路

上,从而消除热点链路,实现全局均衡负载。
(2)故障场景下的路径快速收敛:在孪生网络的多

路径上分别模拟单条链路故障、同时多条链路过载、以及

关键节点故障等情况,以考察算法的健壮性。 孪生仿真

记录表明:当一条链路突然中断时,业务流量在 50
 

ms 以

内完成了故障收敛;当多条链路先后超阈值拥塞时,算法

计算新的隧道路径进行流量转移,业务在 1
 

s 内恢复均

衡;当网络节点发生故障时,算法同样能在约 1
 

s 内完成

业务的切换调度。 这些收敛时间远低于传统路由协议自

身收敛时间,实验结果符合预期。
在整个实验过程中,仪器大模型技术发挥了重要作

用。 一方面,仪器大模型根据现网历史数据自动生成了

复合流量,使仿真流量组合充分代表实际网络中的隧道

业务、基础业务和互联网流量的叠加特性;这保证了算法

测试的业务场景覆盖率,避免仅人工选取少数流量模式

带来的精准度问题。 另一方面,仪器大模型实时解析故

障模拟过程中的仪器数据,自动判断算法是否按预期执

行,并将复杂的链路指标变化整理成直观的文字报告。
在该实验场景下,数学抽象方法无法预测业务调度

收敛时间,只能采用网络仿真器方法进行小规模仿真验

证,表 8 对比了两种网络孪生方案优劣。

表 8　 使用仪器大模型技术前后的差异(场景 2)
Table

 

8　 Differences
 

before
 

and
 

after
 

using
 

the
 

large
 

model
 

(scenario
 

2)

指标 网络仿真器方法 基于仪器大模型技术

验证总耗

时

7 天(搭建和配置网络

仿真器)
≈4

 

h,(自动生成场景,并行

仿真执行,验证次数 n=5)

参与人员
2 名网络工程师,手工

验证
1 名网络工程师,自动完成

拓扑重建

匹配率

≈44% (只能仿真 200
节点)

≈100% (大模型校核隧道

配置,完整呈现拓扑)

协议状态

匹配率

44% (仿真 200 节点相

关协议可还原,其余无

法还原)

≈100% (算法参数一致,仿
真协议行为高度吻合)

业务流量

仿真匹配

率

≈60% (仿真流量种类

有 限, 仅 支 持 基 础

TCP / UDP 流量)

95% (基于现网数据生成流

量,更接近真实分布)

配置验证

能力

仿真还原度有限、时延

精度≈1
 

ms;
离线分析为主

仿真还原度高、 测量精度

ns 级

实时解析测量数据、支持在

线调测

　 　 此外,此场景中仪器大模型通过结合 RAG 的实时知

识矫正与 PEFT 的深度领域内化,克服了仪器与厂商在

SRv6 隧道配置上的语法差异,SRv6 等协议生成准确率

较传统 PEFT 方式提高 70% 。
总体来看,相较于网络仿真器方法在规模( 44% 匹

配)和流量真实性(60% ) 上的局限,引入仪器大模型技

术后的方案实现了全域拓扑与协议的精准还原,并将

SRv6 等新兴协议的配置生成准确率提升至 95% ,为复杂

新技术的平滑落地提供了决定性支撑。

3. 4　 小结

　 　 上述实验对比显示,通过引入仪器大模型技术,网
络数字孪生在关键网络场景下的孪生仿真结果与现网

高度一致,实现高保真孪生仿真目标;拓扑、协议及流

量等各方面的匹配率均接近 100% ,达成准确率目标;
同时大幅减少了运维人员经验的依赖及可能带来的操

作隐患。

4　 结　 　 论

　 　 本文创新性地提出了一种基于大模型与网络仪器协

同的网络数字孪生方案。 该方案通过网络仪器的实时仿

真、数据监测与大模型的智能推理深度融合,首次实现了

物理网络状态的高保真、动态映射,并能够自动生成网络

配置与优化方案,有效突破了传统网络仿真器或数学抽

象方案在孪生保真度、动态操作响应等方面的瓶颈,为复

杂网络环境下的智能运维提供了新的解决方案。
经过中国移动数据承载网络的数字孪生系统多次现

网试点验证,基于仪器大模型的网络数字孪生方案在设

备割接、配置变更、新技术上线等多个典型场景下均展现

出了显著的应用成效,可将运维操作用时缩短约 40% ,将
网络配置与验证周期由数周降至数小时,大幅提升了运

维效率与安全性。 研究成果不仅为通信行业数字化转型

提供了创新性技术方案,同时为智能运维模式在其他行

业及多种复杂网络环境中的推广应用奠定了基础,展现

出广阔的实际应用前景。
本文重点聚焦在运营商大规模网络生产运营中的实

际场景,提出了“数据驱动+仪器仿真+大模型验证”的仪

器大模型技术,实验及应用成效显著。 但当前研究在规

模部署时仍面临仪器大模型对高质量微调数据依赖较强

(上万条拓扑+协议+流量配置样本需经过语法-语义-业
务一致性三级校验)、单一仪器数据训练模型兼容性不足

等问题。 未来工作将进一步优化仪器与大模型的协同机

制,深入研究可复现、可观测、可推演的仪器大模型孪生

验证体系,为网络智能化发展提供先进的数字孪生技术

方案。
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