H46% 5510 W &/ L F O M Vol. 46 No. 10
2025 4F 10 H Chinese Journal of Scientific Instrument Oct. 2025

DOI: 10. 19650/j. cnki. cjsi. J2514194

/.

PR B 2 SR K PR A R A B 5

XTI, SIEM KBNS 4%k
(LT TR IE T SHH TR #25 125105)

T Al TR AR 3 R I R AR AT R AR R AE R PR ) 7 A R I AR R BB, P U AR A L A e 4, e BE T A
25 EV4A50 LR ARE ST & , 1R f shiR 4 sl B s SE S I ST, LA HL R L A AT R X 42, ST T 361 — 2 46 R e I
R por INABSTRY SR, A% G0 IR B 2 ) A TR S o g ) w0 T R WO RGO AT, — SR AR TR T i R 2 X L P A B A 7 S B A U
TORBURIB RO K TR 2L, ME LA L R Bh YR R BRI X S A R A A N R O R b AR R, R — bk
G2 BFRULAGR 28 S5 I AR M W e 22 AT R FE A AR 51 B8 B A 3] IO 2% 25 R 4 R B4 R B AR v, 38 4 22 4 B AN A
SRR 4 S5 R Y IE AL, A R TR I R B, 45 S ShAS AT R AR R TR D AR A 5% 0B AL B s
T —EFHEEE A IR, o, SRS R BB A 3 A [R5 A8 A S AR R R TR S RS e R R R T e e
WTER R LI E A I A s BN TR A — 4R T A AP SA 8, W20 ms it T e ]
AR R A A 0 HE Bl PR 7 F I A IR A 5 f |, 30 e AR 4 37 Al 2 A B A5 L AAGH I 95 AW, UESE T 72 L
BIRZE IR A T TR RE A 5

KB ANV TR LR AT R R ik

FES%ES: TM501.2 THS9 XEFRRE: A EXREZRSEN: 470.40

Research on series arc fault detection model for electric vehicles

Liu Yanli, Yang Heyun,Lyu Zhengyang,Zhang Siyi, Jin Fengyi

(Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China)

Abstract: In electric vehicles, the electrical contact points within the main circuit are susceptible to series arc faults as a result of poor
contact and other factors, which poses a significant threat to the safety of vehicle occupants. First, this study constructed an experimental
platform centered on the Geely Emgrand EV450 electric vehicle and undertook experimental investigations on arc faults in electric
vehicles. With the power supply terminal voltage serving as the research focus, a one-dimensional convolution based arc fault detection
model was developed. However, traditional deep learning models encounter two core challenges in practical applications. First, the
models have poor interpretability, making it difficult to clarify the key basis for fault detection. Second, they have a large number of
parameters and high computational complexity, making it difficult to meet the strict requirements for real-flortime and lightweight fault
detection in electric vehicles. To address these issues, this study adopts a network structure search strategy integrating multi-objective
optimization. which incorporates accuracy, interpretability indicators, and floating point operations into the search objectives of the
network structure search. Through multidimensional trade-offs, adaptive optimization of the network structure is achieved, which
effectively improves the initial performance of the model. Subsequently, a feature channel merging strategy was developed by integrating
dynamic time warping, particle swarm optimization, and simulated annealing algorithms. Among these methods, Dynamic time warping
can measure the similarity of outputs from different channels; Particle swarm optimization, with its global search capability, quickly
locates potential optimal channel merging combinations; and Simulated annealing further enhances the rationality and effectiveness of
channel merging. Using this strategy, an accurate, interpretable, and lightweight arc fault detection model for electric vehicles has been

successfully developed. Finally, generalization analysis and comparative analysis with other detection methods confirm that the model
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exhibits excellent performance in electric vehicle arc fault detection.

Keywords : electric vehicles; power supply terminal voltage; interpretability; lightweight
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Fig. 1

Experimental circuit diagram
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Table 1 Experimental equipment parameters
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Table 2 Experimental program
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Fig.2 Voltage waveform of power supply terminal under

different operating conditions of electric vehicles
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Table 3 Initial network parameters
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Fig.3 Improved MBConv structure diagram
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Fig. 4 Training and testing accuracy
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Table 6 Comparison of classification accuracy for

different sample lengths in the network

A E IYZEUMETR R/ % a0 5 5]/ ms
1000 82.76 23.82
1500 92.74 34.95
2 000 95.67 47.86
2500 95.97 56.30

%7 MBconv_NAS_model 1 5]

Table 7 Model parameters after network structure search

HIREEY eV AN i L A
Convl TX1X1x72
Max poolingl 2x1 499x72
Conv2 5SX1X72x16
Max pooling2 2x1 124x16
Conv3 3X1x16x96
Max pooling3 2x1 62%96
1x1x96x288
MBconv 3x1x288
1x1x288%x96 62%x96
AdaptiveAvg 1x96
Flatten 96
FC 96x2 2
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Fig. 8 Spectral diagram of arc fault samples
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Table 8 Channel merging result after PSO optimization

HBRZ WHES
[1,2,3,4,5,7,8,9,10, 12, 13, 17, 18,
19, 20, 21, 24, 26, 27, 31, 32, 33, 35, 37,
Layerl
39, 41, 46, 48, 51, 55, 58, 59, 62, 63, 65,
69, 70, 71]
Layer2 [1,3,4,8, 11, 12, 13, 15]
[1,3,5,7, 8,10, 11, 12, 16, 19, 21, 22, 23,
24,25, 26, 28, 31, 32, 36, 37, 39, 40, 41,
Layer3 44, 48, 52, 55, 56, 57, 59, 63, 64, 66, 69,

70, 71, 72, 74, 76, 78, 80, 86, 87, 89, 90,
91, 92, 94, 95, 96]
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Table 9 The final merged channel set

BRZ WL
[37, 27, 48, 8, 70, 1, 65, 33, 19, 59, 21, 3,
Layerl 51, 39, 35, 46, 17, 10, 4, 9, 13, 41, 26, 62,
2,55, 5, 31]
Layer2 [8,3,12,4,13, 11, 1]
[22, 11, 21, 56, 48, 28, 26, 31, 91, 39, 78,
32,19, 24, 23, 10, 63, 76, 66, 71, 90, 92, 8,
Layer3

1, 40, 89, 64, 55, 70, 87, 12, 44, 72, 94, 59,
3,36,5,41,7, 95]

x11 GHMEEEMERIE
Table 11 Model performance validation before and

after merging

10 RAMESH

Table 10 Optimal network parameters

KR BRI 1 Ak 2
Convl Tx1x1x45
Max poolingl 2x1 499x45
Conv2 5x1x45x10
Max pooling2 2x1 124x10
Conv3 3x1x10x56
Max pooling3 2x1 62%56
1x1x56x168
MBconv 3x1x168
1x1x168x56 62x56
AdaptiveAvg 1x56
Flatten 56
FC 56%2 2
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Table 12 Model generalization performance evaluation

T AR I U/ % FEA L
il A (BRI IE ) 97.90 1 000
TV (B FNIE ) 98. 00 1 000
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Table 13 Model robust performance evaluation

AR EX RN SRR IR %
i 1E# 99. 80
Pl 3 1EH 100. 00
R 45 55 2 £ EH 100. 00
TR A AT (oL E# 99. 80
S g IEH  HUIR R std=0.05 92. 60
e VI T v A 91.00
std=0. 1
std=0. 1
N IEH RIRME  spike_frequence= 95. 80
0. 005
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Table 14 Comparison of parameter quantities for

different models and modules

e M R/ %
MBconv_NAS_model 69 794 98. 08
NAS-1. 11 70 082 97.38
NAS-2. 11 76 706 98.29
NAS-3. 11 82 082 97.78
NAS-1. 13 70 226 97.98
NAS-2. 13 79 010 98.08
NAS-3.13 85 154 97.48
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Table 15 Comparison of classification accuracy among
different models

Wik AU/ % e DU B[]/ ms
K[ 2] 51.61 26
SCHR[3] 87.10 848
K[ 4] 91.94 38
R[5 88. 41 245
SCHR[24] 90. 12 35
SCHR[29] 84.78 26
MBconv_Initial_model 95. 67 11
MBconv_NAS_model 98. 08 24
MBconv_MC_model 97.98 5
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Table 16 Comparison of parameter quantities for

different models

i MBHR HERH /%
AT 25 188 97.98
SCHK[ 3] 134 268 738 87. 10
SCHR[ 4] 135 602 91.94
SCHK[ 24 ] 157 378 90. 12
SCHR[29] 46 402 84.78
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