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电动汽车串联电弧故障检测模型研究∗
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摘　 要:电动汽车主电路电气接触点因接触不良等原因易产生串联型电弧故障,严重威胁车内人员生命安全。 首先围绕吉利帝

豪
 

EV450
 

电动汽车搭建实验平台,开展电动汽车电弧故障实验研究,以电源端电压为研究对象,建立了基于一维卷积的电弧故

障检测模型。 然而,传统深度学习模型在实际应用中面临两大核心难题:一是模型可解释性差,难以明确故障检测的关键依据;
二是模型参数量大、计算复杂度高,难以满足电动汽车故障检测对实时性与轻量化的严苛要求。 为解决上述问题,采用一种融

合多目标优化的网络结构搜索策略,将准确率、可解释指标和浮点运算量融入到网络结构搜索的搜索目标中,通过多维度权衡

实现网络结构的自适应优化,有效改善了初始模型性能。 随后,结合动态时间规整、粒子群算法和模拟余弦退火优化算法,构建

了一套特征通道合并策略。 其中,动态时间规整能够度量不同通道输出的相似性;粒子群算法凭借其全局搜索能力,快速定位

潜在的最优通道合并组合;模拟余弦退火算法进一步提升了通道合并的合理性与有效性。 通过该策略,成功构建了准确性、可
解释性、轻量化兼备的电动汽车电弧故障检测模型,最后,通过对模型进行泛化性分析及与其他检测方法对比分析,证实了在电

动汽车电弧故障检测方面性能优异。
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Abstract:In
 

electric
 

vehicles,
 

the
 

electrical
 

contact
 

points
 

within
 

the
 

main
 

circuit
 

are
 

susceptible
 

to
 

series
 

arc
 

faults
 

as
 

a
 

result
 

of
 

poor
 

contact
 

and
 

other
 

factors,
 

which
 

poses
 

a
 

significant
 

threat
 

to
 

the
 

safety
 

of
 

vehicle
 

occupants.
 

First,
 

this
 

study
 

constructed
 

an
 

experimental
 

platform
 

centered
 

on
 

the
 

Geely
 

Emgrand
 

EV450
 

electric
 

vehicle
 

and
 

undertook
 

experimental
 

investigations
 

on
 

arc
 

faults
 

in
 

electric
 

vehicles.
 

With
 

the
 

power
 

supply
 

terminal
 

voltage
 

serving
 

as
 

the
 

research
 

focus,
 

a
 

one-dimensional
 

convolution
 

based
 

arc
 

fault
 

detection
 

model
 

was
 

developed.
 

However,
 

traditional
 

deep
 

learning
 

models
 

encounter
 

two
 

core
 

challenges
 

in
 

practical
 

applications.
 

First,
 

the
 

models
 

have
 

poor
 

interpretability,
 

making
 

it
 

difficult
 

to
 

clarify
 

the
 

key
 

basis
 

for
 

fault
 

detection.
 

Second,
 

they
 

have
 

a
 

large
 

number
 

of
 

parameters
 

and
 

high
 

computational
 

complexity,
 

making
 

it
 

difficult
 

to
 

meet
 

the
 

strict
 

requirements
 

for
 

real-flortime
 

and
 

lightweight
 

fault
 

detection
 

in
 

electric
 

vehicles.
 

To
 

address
 

these
 

issues,
 

this
 

study
 

adopts
 

a
 

network
 

structure
 

search
 

strategy
 

integrating
 

multi-objective
 

optimization.
 

which
 

incorporates
 

accuracy,
 

interpretability
 

indicators,
 

and
 

floating
 

point
 

operations
 

into
 

the
 

search
 

objectives
 

of
 

the
 

network
 

structure
 

search.
 

Through
 

multidimensional
 

trade-offs,
 

adaptive
 

optimization
 

of
 

the
 

network
 

structure
 

is
 

achieved,
 

which
 

effectively
 

improves
 

the
 

initial
 

performance
 

of
 

the
 

model.
 

Subsequently,
 

a
 

feature
 

channel
 

merging
 

strategy
 

was
 

developed
 

by
 

integrating
 

dynamic
 

time
 

warping,
 

particle
 

swarm
 

optimization,
 

and
 

simulated
 

annealing
 

algorithms.
 

Among
 

these
 

methods,
 

Dynamic
 

time
 

warping
 

can
 

measure
 

the
 

similarity
 

of
 

outputs
 

from
 

different
 

channels;
 

Particle
 

swarm
 

optimization,
 

with
 

its
 

global
 

search
 

capability,
 

quickly
 

locates
 

potential
 

optimal
 

channel
 

merging
 

combinations;
 

and
 

Simulated
 

annealing
 

further
 

enhances
 

the
 

rationality
 

and
 

effectiveness
 

of
 

channel
 

merging.
 

Using
 

this
 

strategy,
 

an
 

accurate,
 

interpretable,
 

and
 

lightweight
 

arc
 

fault
 

detection
 

model
 

for
 

electric
 

vehicles
 

has
 

been
 

successfully
 

developed.
 

Finally,
 

generalization
 

analysis
 

and
 

comparative
 

analysis
 

with
 

other
 

detection
 

methods
 

confirm
 

that
 

the
 

model
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exhibits
 

excellent
 

performance
 

in
 

electric
 

vehicle
 

arc
 

fault
 

detection.
Keywords:electric

 

vehicles;
 

power
 

supply
 

terminal
 

voltage;
 

interpretability;
 

lightweight

0　 引　 　 言

　 　 电动汽车中的电气连接点因机械振动、热胀冷缩等

因素出现接触不良时,极易产生串联型电弧故障。 电弧

故障可能会引发火灾,对车内人员的生命财产安全构成

严重威胁。 因此,精确检测电动汽车故障电弧,及时发现

并排除隐患,成为保障电动汽车安全运行的关键任务。
目前,电动汽车故障电弧检测问题已逐步得到相关研究

人员的关注。 Liu 等[1]
 

利用梯度加权类激活图和沙普利

可加性特征解释方法优化视觉几何组( visual
 

geometry
 

group,
 

VGG)网络,提高了电弧故障检测模型的可视化程

度。 Liu 等[2]
 

对弱电流信号进行两级滤波预处理后,通过

阈值法实现了电动汽车电弧故障实时检测。 Liu 等[3]
 

提

出了基于 VGG16 网络模型的电动汽车充电系统直流串

联电弧故障检测方法。 刘艳丽等[4]
 

借助遗传算法优化网

络参数,提出了基于轻量化卷积神经网络的电弧故障检

测模型。 Emrani 等[5]
 

通过提取 12 个时频域特征并使用

随机森林分类器进行训练,实现了对电弧故障的高精度

识别。 刘艳丽等[6]
 

通过改进轻量卷积操作,并结合阶梯

式架构设计、卷积核尺寸优化、高效通道注意力机制及动

态学习率调整策略,构建轻量型检测模型,实现了电动汽

车直流串联电弧故障的精准检测。 刘艳丽等[7]
 

通过搭建

电动汽车故障电弧实验平台,基于改进
 

Mobilenet
 

轻量化

卷积神经网络,实现了电动汽车串联型电弧故障的高效

检测与故障选线。 刘艳丽等[8]
 

以吉利帝豪
 

EV450
 

为基

础搭建实验平台,采用自定义差分阈值滤波-分段最大值

标准化-统计数值规律的方法,实现了基于电源端电压的

电动汽车电弧故障高精度检测。 文献[1-7]借助电动汽

车模拟电路开展电动汽车故障电弧检测方法研究。 但在

电源电压、负载类型等方面与真实电动汽车存在显著差

异,研究成果是否适用于真实电动汽车有待进一步试验。
传统的深度学习模型具有很高的计算复杂度,近年

来,网络模型轻量化为提高故障电弧检测的时效性提供

了基础。 Ning 等[9]
 

通过改进卷积层和优化空间可分离

卷积,提出了 Arc_EffNet 模型,减少了算法复杂度的同时

保持了高水平的检测精度。 Wang 等[10]
 

通过等距映射和

瓶颈构建块,开发了一种基于卷积神经网络的轻量级模

型,实现了快速且准确的电弧故障检测。 Chen 等[11]
 

提出

了结合挤压和激励(squeeze-and-Excitation,
 

SE)注意力机

制的多输入卷积神经网络,实现直流电弧故障检测。
Wang 等[12]

 

采 用 移 动 倒 置 残 差 瓶 颈 ( mobile
 

inverted
 

residual
 

bottleneck,
 

MBConv)模块、K 均值聚类和 t 分布随

机邻 域 嵌 入 方 法 优 化 特 征 提 取, 开 发 了 一 种 基 于

EfficientNet 的轻量级电弧故障检测模型。 Zhou 等[13]
 

通过

应用扩展卷积层来增加模型的感受野,提出了一种轻量化

的多尺度卷积神经网络模型。 Lu 等[14]
 

结合了轻量级迁移

学习和对抗数据增强技术,解决了光伏系统中直流串联电

弧故障检测面临的有限故障数据问题。 Sung 等[15]
 

采用两

阶段训练及轻量级卷积神经网络与单层长短期记忆结构,
实现对光伏系统中的微弱电弧故障检测。

文献[1-7,9-15] 以回路电流作为电弧故障检测模

型的分析对象,但电流信号受负载类型、阻抗变化等因

素影响较大,这可能会导致电弧故障检测模型的误判,
降低复杂工况下检测结果的可靠性。 因此,部分学者

尝试通过电压信号进行电弧故障检测。 Xing 等[16]
 

通过

卷积神经网络与长短期记忆网络提取电源端电压的信

号特征,完成了电弧故障诊断。 Wang 等[17]
 

通过设计特

定的频率选择和检测电路提取共模导电电压中的电弧

特征,构建了电弧故障特征平面及判定算法。
文献[3-16]

 

提出的电弧故障检测模型大多是基于

深度学习的“黑盒”模型,这些模型具有强大的数据处理

和分类能力,能够在各种领域的电弧故障检测中表现出

优异的分类性能。 但由于模型缺乏透明度,很难理解模

型做出特定决策的原因。 尤其在电弧故障检测方面,模
型缺乏透明度可能会导致难以准确评估故障情况。
Wang

 

等[18]
 

基于注意力机制可视化电弧特征对模型的影

响,优化了输入数据和模型结构,提高了模型的综合性

能。 Guo 等[19]
 

通过定义修剪比率和设计灵敏度函数来

识别并移除不影响分类性能的网络通道,解决了高容量

卷积神经网络在遥感图像分类中的高推理成本问题。
Chen 等[20]

 

通过增量算法找到最优逻辑表达式用于滚动

轴承故障诊断,模型精度和可解释性良好。 Liu 等[21]
 

提

出了基于注意力机制和类激活图的
 

GAMNet,解决了多

尺度下关注的特征信息无法被注意力准确聚焦的问题。
Chen 等[22]

 

建立了可解释神经网络-时间频率网络,揭示

了卷积神经网络(convolutional
 

neural
 

network,
 

CNN)预测

的逻辑基础。
文献[18-22]大多聚焦于其他领域的检测模型可解

释性,尽管这些成果为提升模型透明度和可靠性提供了

一定技术参考,但对于如何使用可解释方法指导完成电

弧故障检测模型的轻量化,以保证模型在轻量化的同时

不失可解释性,目前相关研究较少。
综上,现有基于深度学习的电弧故障检测模型存在

两方面不足。 一方面,部分模型因其内部复杂运算机制

难以直观揭示决策依据,无法为故障诊断提供清晰的逻
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辑支撑。 另一方面,一些模型在构建过程中未充分考量

轻量化设计,模型结构臃肿复杂,在车载计算资源有限与

实时性要求较高的情况下,检测模型难以高效运行,无法

及时、精准地完成电弧故障检测任务,严重制约了其实践

应用价值。 鉴于此,本研究提出一种轻量化与可解释性

兼顾的电动汽车故障电弧检测模型。 主要学术贡献和创

新点包括:
 

1)本研究以吉利 EV450 电动汽车为基础,利用实车

电路模拟了电动汽车发生电弧故障情况,更贴合实际应

用场景。 本研究以电源端电压为分析对象,受负载类型、
阻抗变化等因素影响小,降低了电弧故障检测模型的误

判概率。
2) 为解决网络结构搜索( neural

 

architecture
 

search,
 

NAS)中仅关注检测准确率对模型提升的局限性,将可解

释性和浮点运算量作为优化指标,使模型在准确性、可解

释性和实时性能之间取得平衡。
3)利用动态时间规整( dynamic

 

time
 

warping,
 

DTW)
算法选择代表性通道,通过计算不同通道与输入序列之

间的相似性,能够从众多通道中高效筛选出最具代表性

的通道组合,提升了代表通道选择的可解释性。
4)提出两级通道合并策略,先通过粒子群算法筛选

类似代表性通道,再用模拟余弦退火方法确定最终网络

合并通道集合,降低模型参数量的同时保持了模型的表

达力,实现模型的轻量化与可解释性。

1　 电弧故障实验研究

　 　 为了完成电动汽车电弧故障准确检测,需要搭建

电弧故障实验平台,获取能够反映电弧故障特征的电

流电压信号,对采集到的信号进行深入分析与处理,从
而挖掘出故障特征,最终实现对电弧故障的可靠检测

与诊断。

1. 1　 实验平台的设计

　 　 区别于文献[1-7]模拟仿真得到的电动汽车实验电

路,本研究基于吉利帝豪 EV450 搭建了电动汽车电弧故

障实验平台,如图 1 所示。 为简化分析,图 1 仅保留了实

车的主电路。 其中空调制冷系统主要由压缩机和冷凝器

组成,而制热系统主要由鼓风机与加热器完成。 实验所

用电弧故障发生器见文献[23],其他实验设备型号如

表 1 所示。 实验采样频率为 60
 

kHz。
实验时将电弧发生器串联在电机控制器出线端,用

于模拟电机支路发生串联型电弧故障情况。 制热时将温

度控制旋钮调至最高 32℃ ,同时将鼓风机风量调至最

大。 制冷时将温度控制旋钮调至最低 16℃ 。 具体实验

方案如表 2 所示。

图 1　 实验电路

Fig. 1　 Experimental
 

circuit
 

diagram

表 1　 实验设备型号

Table
 

1　 Experimental
 

equipment
 

parameters

实验设备 具体型号

直流电源 DC346V

永磁同步电机 TZ220XS503

电机控制器 INVCON2. 3-CN

电压传感器 LHB500V5VT1

数据采集卡 USB3200

空调压缩机 06737164(EVH33Y1)

表 2　 实验方案

Table
 

2　 Experimental
 

program

组别 工作模式 速度 / (km·h-1 ) 工作状态

1 ~ 5 电机单独运行 10,20,40,60,80 正常

6 ~ 10 电机单独运行 10,20,40,60,80 故障

11 ~ 15 运行中制热 10,20,40,60,80 正常

16 ~ 20 运行中制冷 10,20,40,60,80 正常

21 ~ 25 运行中制热 10,20,40,60,80 故障

26 ~ 30 运行中制冷 10,20,40,60,80 故障

31 加速运行 10→80 正常

32 减速运行 80→10 正常

1. 2　 实验结果分析

　 　 以电动汽车速度为 40 km/ h 为例,分别从第 3 和第 8 组

实验数据中截取电源端电压时间序列点生成图 2( a)和

(b)所示实验波形,值得注意的是,无论是在正常运行还是

电弧故障状态下,电源端电压信号中频繁出现脉冲干扰现

象。 这一现象源于动力电机控制器利用特定频率和模式

的脉冲指令来精准调控电机的位置、转速及电流,以保障
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电机高效且稳定地执行任务,而这些控制指令反馈在电源

端电压中表现为一种类似周期性的脉冲干扰信号。

图 2　 电动汽车不同工况下电源端电压波形

Fig. 2　 Voltage
 

waveform
 

of
 

power
 

supply
 

terminal
 

under
 

different
 

operating
 

conditions
 

of
 

electric
 

vehicles

图 2(b)中,正常区域表示动静触头可靠接触,模拟

电机正常单独运行状态。 在此状态下,电气连接稳定,各
项电气参数处于正常范围。 故障区域则表示从动静触头

开始分离到电弧完全熄灭的过程。 在故障区域的不同阶

段波形特征如图 2(c)所示。
1)电弧形成阶段

弧隙电压上升到一定值,导致气隙出现碰撞电离,形
成电弧,如图 2(c)中①所示。

2)电弧燃烧阶段

电弧形成后,提供了导电路径,电流迅速增加。 因电

源内阻的存在, 导致电源端电压暂时性地下降, 如

图 2(c)中②所示。
3)电弧熄灭阶段

基于直流电弧的负阻性,随着电弧电流增加,电弧电

压下降,同时电机电磁转矩增加,使转速迅速增加,会导

致电机的反电动势增加,进而反作用于电流,使电流以一

种极快速度降低,电源内阻的分压降低,电源端电压开始

回升,同时由于电机呈感性,会导致 L dI
dt

< 0, 电弧电压

增加,电弧趋于熄灭,如图 2( c)中③所示。 而一旦电弧

电压上升到一定值,弧隙被重新击穿导通,电流重新显著

上升,完成一次循环。

2　 电弧故障检测模型

2. 1　 构建基于深度学习的电弧故障检测模型

　 　 如图 2 所示,脉冲干扰会影响电弧故障特征,使基

于人工特征工程的检测方法难以准确捕捉故障本质特

征,而深度学习凭借多层神经网络的层级化特征提取

机制,能够自适应地从含噪信号中挖掘非线性映射关

系。 因此,本研究基于深度学习对复杂信号的强表征

能力,搭建了基于一维卷积的电动汽车串联型电弧故

障检测模型,该模型由 3 个卷积层、1 个 MBConv 模块

以及 1 个全连接层组成,适用于二分类问题。 具体结

构如表 3 所示,考虑到运算效率,普通卷积层最大的通

道数仅设置为 64。

表 3　 初始网络参数

Table
 

3　 Initial
 

network
 

parameters

各层结构 卷积核大小 输出维数

Conv1 3×1×1×32

Max
 

pooling1 2×1 1
 

000×32

Conv2 3×1×32×16

Max
 

pooling2 2×1 500×16

Conv3 3×1×16×64

Max
 

pooling3 2×1 250×64

1×1×64×192

MBconv 3×1×192

1×1×192×64 250×64

AdaptiveAvg 1×64

Flatten 64

FC 64×2 2

　 　 为了提升模型的效率和性能,采用了 MBConv 模块

作为网络的基础构建单元[4]
 

。 MBConv
 

模块作为一种能

有效提高计算效率的卷积模块,在移动设备及其他资源

受限环境下的深度学习模型中应用广泛。 它通过使用

1×1 逐点卷积( pointwise
 

convolution,
 

PW) 调整通道数,
利用 3 × 1 或 5 × 1 的深度卷积 ( depthwise

 

convolution,
 

DW)提取空间特征,最后再次使用 1 × 1
 

PW 恢复原始
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维度,确保模块的通用性和兼容性。 为了增强特征表

示能力,传统 MBConv 模块在 DW 和 PW 之间加入
 

SE
注意力机制,并且还融合了残差连接来促进信息流动。
为提高计算效率,本研究移除了 SE 模块,同时考虑到

Dropout 会降低模型的透明度并使决策过程难以理解,
因此也予以删除。 改进后的 MBConv 模块结构如图 3
所示。

图 3　 改进后 MBConv 的结构

Fig. 3　 Improved
 

MBConv
 

structure
 

diagram

以表 2 中实验组别 1 ~ 10 的电源端电压信号来建立

样本库,每个样本由 2
 

000 个连续的时间序列点组成。
对各速度工况的样本分别按近似

 

8 ∶ 2
 

比例分配至训练集

与测试集,保证整体训练集与测试集样本比例为
 

8 ∶ 2,具
体样本数量和标签如表 4 所示。

表 4　 样本的标签和数量

Table
 

4　 Labels
 

and
 

quantities
 

of
 

samples

工作模式 标签 样本数

正常运行 0 2
 

483

故障运行 1 2
 

483

　 　 这里使用自适应学习率对网络进行了轮次为 50、批
次为 128 的训练,初始学习率设置为 0. 000 1,最小学习

率设置为 0. 000 001 。 优化器为 Adam,损失函数为交叉

熵损失,经过训练,模型在测试集上的分类准确率为

95. 67% ,训练结果如图 4 所示,测试精度与训练精度密

切相关,这验证了模型没有过拟合,模型的超参数设置合

理[24]
 

。 将该网络命名为 MBconv_Initial_model。

图 4　 训练和测试准确率

Fig. 4　 Training
 

and
 

testing
 

accuracy

2. 2　 基于 CAM 的模型可解释性分析

　 　 为了提高 MBconv_Initial_model 的可解释性,使用类

激活图(class
 

activation
 

mapping,
 

CAM)来观察卷积神经

网络对输入不同区域的关注程度。 它通过分析最后一层

卷积层输出的特征图实现对输入特征的重要性评估,进
而明确哪些输入特征对最终分类结果影响最为显著。
CAM 的计算可以通过 4 步骤实现,即:

1)前向传播:将输入图像通过 CNN 进行前向传播,
直至最后一层卷积层,得到特征图 A。

2)全局平均池化:平均所有特征图在空间维度上的值。
3)特征图的加权求和:对于每个类别 c,计算特征

图 A 中每个特征图 A i 的加权和,权重 ω ci 是通过类别 yc

和全局平均池化结果之间的相关性确定的。 最终针对特

定类别 c 的类激活图 Mc 为,具体操作如式(1) 所示。
Mc = Σ iω ciA i (1)
4)上采样:将二维的 Mc 上采样到输入图像的尺寸,

以便于与原始图像进行逐像素的比较。
因本研究研究对象为一维电压数据,需要将相应的像

素计算转化为对一维时间序列的相关计算,对于得到的特

征图加权和,通过采用线性插值去替代图像双线性插值,
恢复到原始输入数据维度。 利用 CAM 完成局部可解释的

结果如图 5 所示。 图中实框线标注了故障样本及其对应

的 CAM 权重,虚框线标注了噪声及其对应的 CAM 权重。

图 5　 样本和 MBconv_Initial_model 输出的 CAM
Fig. 5　 Samples

 

and
 

CAM
 

output
 

from
 

MBconv_Initial_model
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由图 5 可以观察到,导致模型出现误判的原因是模

型对于噪声给予了较大的关注,使模型尽可能的关注电

弧故障特征是提高模型准确率和可解释性的重点,同时

由于初始检测模型的参数设置具有一定的主观性,模型

准确率仍然具有一定的提升空间。
为了进一步验证模型对于故障信息的捕捉能力,同

时说明 CAM 对于故障特征的关注不是偶然,本研究对

图 5(a)样本第 1 ~ 1
 

650 个时间序列点中的故障信息采

用正常样本的数据进行遮掩,只保留第 1
 

650 ~ 2
 

000 个

时间序列点中的故障信息,CAM 运算结果如图 6 所示,
可见,即使通过特征遮掩,模型仍然可以关注到该样本的

故障特征,同时给出正确的分类结果。

图 6　 图 5(a)故障信息遮掩后样本和 MBconv_Initial_model
输出的 CAM

Fig. 6　 Fig. 5
 

(a)
 

sample
 

after
 

fault
 

information
 

masking
 

and
 

CAM
 

output
 

from
 

MBconv_Initial_model

2. 3　 模型最优结构参数调整

　 　 由于 MBconv_Initial_model 的检测精度已在 95% 以

上,因此本研究认为无需再添加普通卷积层数,本节将模

型的分类准确率、可解释性、浮点运算量 3 个指标融入到

多目标网络结构搜索中,以实现对 MBconv_Initial_model
模型综合性能的提升。

本研究基于进化算法( evolutionary
 

algorithms,
 

EA)
完成网络结构搜索。 在每次迭代中,EA 根据预定义的适

应度函数评估当前种群中各个个体的表现,并从中选择

表现优秀的个体参与下一代的繁殖过程,直到找到满足

特定性能要求或达到预定迭代次数的最佳网络结构。 利

用全局搜索空间在预定的神经网络深度范围内搜索网络

的内部布局,为网络架构的选择提供更高的灵活性[25]
 

。
本研究的全局搜索空间如表 5 所示,由于研究对象为一

维时间序列,为了抑制边界效应可能产生异常波动,每一

层的卷积设置 padding= 1,扩张比例指的是 MBConv 前端

逐点卷积输出通道数与输入通道数的比值,决定着逐点

卷积输出通道的数量, 据文献 [ 4 ], 网络的第 1 个

MBConv 的扩展比例设置成 3,两者不作为网络结构搜索

中的参数。

表 5　 搜索空间

Table
 

5　 Search
 

space

参数 搜索空间

通道数 [16
 

32
 

48
 

64
 

72
 

96
 

128
 

256]

卷积核的大小 [3
 

5
 

7
 

9]

步长 [1
 

2]

padding

扩张比例

　 　 1)搜索目标的设置

传统的进化算法在进行网络搜索时,通常仅以较高

的准确率作为唯一搜索目标,但这种搜索可能会导致算

法向一些难以解释或更加复杂的方向搜索,因为模型复

杂性对于性能改进至关重要,但与模型的可解释性和效

率相冲突。 因此需要将准确率、可解释指标和时间指标

纳入到搜索目标中实现多目标优化。 本研究以测试集的

平均稀疏度作为搜索目标的可解释性指标,通过计算每

个样本
 

CAM 中非零元素的比例来衡量单个样本的稀疏

度,高稀疏度意味着模型主要依据少量关键特征做决策,
而低稀疏度则显示模型考虑了更多输入信息。 本研究以

输入样本在检测模型中的浮点运算量作为搜索目标的时

间指标,较低的浮点运算值表明模型的计算效率更高,更
适用于边缘设备或资源受限的应用环境。

为实现多目标网络结构搜索,本研究采用了非支配

排序与拥挤距离计算相结合的方法对种群进行评估。 非

支配排序能有效识别出那些在所有目标上都表现优异,
或者至少在一个目标上具备优势的个体。 基于这些个

体,可构建多个层次的 Pareto 前沿,为后续的优化提供了

基础。 与此同时,本研究通过拥挤距离计算来衡量同一

Pareto 前沿内个体间的多样性,优先选择分布稀疏的个

体,能有效避免算法过早收敛于局部最优解。 这种方法

使得搜索过程可以在准确率、稀疏度及浮点运算量等多

个目标之间达成良好的平衡,进而生成综合性能更优的

网络架构。
2)多目标网络结构搜索

在网络结构搜索前有必要对网络的样本长度进行确

定,以精确得到最优网络结构,本研究分别建立了样本长

度为
 

1
 

000、1
 

500、2
 

000、2
 

500 个采样点的数据库,分析

样本长度对 MBconv_Initial_model 模型分类准确率的影

响,结果如表 6 所示。 可见当检测样本长度在 1
 

500 及以

上时,模型在测试集上的分类准确率在 90%以上,综合考

虑检测时间和准确率,将样本长度设置为 2
 

000,这里检

测时间为树莓派对每个测试样本的平均检测时间。
通过多目标网络结构搜索,得到网络具体结构如

表 7 所示。 沿用 2. 1 节超参数的设置,训练后得到模型
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　 　 　 　 表 6　 网络不同样本长度分类准确率对比

Table
 

6　 Comparison
 

of
 

classification
 

accuracy
 

for
 

different
 

sample
 

lengths
 

in
 

the
 

network

样本长度 分类准确率 / % 检测时间 / ms

1
 

000 82. 76 23. 82

1
 

500 92. 74 34. 95

2
 

000 95. 67 47. 86

2
 

500 95. 97 56. 30

表 7　 MBconv_NAS_model 模型参数

Table
 

7　 Model
 

parameters
 

after
 

network
 

structure
 

search

各层结构 卷积核大小 输出维度

Conv1 7×1×1×72

Max
 

pooling1 2×1 499×72

Conv2 5×1×72×16

Max
 

pooling2 2×1 124×16

Conv3 3×1×16×96

Max
 

pooling3 2×1 62×96

1×1×96×288

MBconv 3×1×288

1×1×288×96 62×96

AdaptiveAvg 1×96

Flatten 96

FC 96×2 2

在测试集上的分类准确率为 98. 08% , 高出原网络

2. 41% ,并将这个网络命名为 MBconv_NAS_model。
图 5 相同样本及经

 

MBconv_NAS_model
 

输出的样本
 

CAM
 

图如图 7 所示。 由图 7
 

( b)
 

可见,网络结构搜索

后,模型对故障波形的关注度显著提升,噪声权重降低,
部分误判样本经该模型后能给出正确分类结果。

图 7　 图 5 样本
 

MBconv_NAS_model 输出的 CAM
Fig. 7　 Fig. 5

 

CAM
 

of
 

sample
 

MBconv_NAS_model
 

output

3　 模型轻量化设计

　 　 由表 7 可以看到,网络第 1 和第 3 层的通道数仍然

较多,如果继续使用网络结构搜索对网络通道数进行调

整,会带来计算复杂度的极速上升,网络通道数的个位数

的量级变化,反映到准确率、稀疏度以及浮点数的变化上

都十分有限,反而会使进化算法落入局部最优解。
在 MBconv_NAS_model 中,多个通道提取的信息可

能存在冗余。 这种冗余性意味着某些通道所提取的信息

已经被其他“典型”通道更为突出地表现出来。 因此,通
过减少冗余通道,不仅可以降低模型的计算复杂度和内

存占用,还可以进一步提高模型的性能。
通道合并是网络通道优化的常见手段,通过线性组

合或非线性变换,将多个通道信息合并到一个或几个新

通道中,以减少通道数并保留重要特征信息。
一般网络优化过程包括 3 个阶段:训练过参数化模

型、按准则优化模型、微调优化后模型恢复性能[26]
 

。 通

道合并网络轻量化也遵循此步骤。
3. 1　 代表性通道选择

　 　 代表通道是最具信息量或代表性的通道,能聚焦故

障特征波形,将其余通道信息合并到代表通道可保留有

用特征,提高模型透明度和可解释性。 正常样本含干扰

信息,若据此合并通道可能增强干扰信息,影响模型性

能。 相反故障样本关键特征更集中明确,通道提取电弧

故障特征信号易观察验证。
选择代表性通道常用基于重要性评分的方法[27-28]

 

。
上述方法在代表性通道选择上做出了贡献,但未从可解

释性角度评估通道重要性。 当通道提取特征与故障电弧

波形特征高度吻合时,既能高效捕捉核心信息,又增强模

型决策过程的透明度和可信度。
本研究结合 DTW 设计相似度度量以寻找代表性通
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道。 DTW
 

擅长处理不同长度样本间距离计算,通过寻找

最佳时间对齐方式,能准确衡量相似度。 当两个序列
 

DTW
 

距离最小时,表明它们形态最接近,即高度相似。
为避免原始数据中噪声影响匹配过程,需对原始数

据进行预处理。 对动力电机在单独运行且速度为

40
 

km / h 的情况下发生的电弧故障样本进行快速傅里叶

变换分析, 结果如图 8 所示。 故障信息主要集中在
 

0 ~ 4
 

kHz
 

频段,故先采用
 

sym2
 

小波基对原始信号进行

三层小波变换获取第 3 层低频小波系数,以突出故障特

征。 随后,再用平均值阈值法对第 3 层低频小波系数进

一步去噪以确保后续分析准确性。 由于第 1 层卷积操作

输入的是含噪时间序列,卷积操作还未充分聚焦故障特

征,潜在噪声会影响匹配的精准度,因此在匹配的过程中

需对第 1 层的卷积特征图采取和原始样本一样的小波变

换。 对原始样本和第 1 层卷积输出的第 3 层低频小波系

数进行匹配,计算两者小波系数的 DTW 距离,找到每一

个样本距离最小的通道索引,将出现频率最高的通道索

引作为第 1 层代表通道。 sym
 

族小波具有对称性和正则

性,其高度对称性可更好地保持信号相位信息,减少相位

失真,在边界处理上更自然平滑,增强匹配的准确性。 此

外,选择 sym 族小波中 sym2
 

小波是为了在计算效率和精

度之间取得平衡。

图 8　 电弧故障样本频谱图

Fig. 8　 Spectral
 

diagram
 

of
 

arc
 

fault
 

samples

由于第 2、3 卷积层是在第 1 层卷积的基础上对故障

特征进行细化提取,噪声已被有效抑制,鉴于此,匹配过

程中无需再对卷积特征图进行小波变换,直接计算第 2、
3 个卷积层特征图与原始样本之间的

 

DTW
 

距离即可。
同样汇总所有故障样本在每一层中距离最近的通道索引

并统计各索引出现频率,将每一层中出现次数最多的通

道索引认定为该层代表性通道,此方法有效捕捉了故障

特征,为模型可解释性提供支持。 每层的最终代表通道

如下:对于卷积层 1,代表通道为 13;对于卷积层 2,代表

通道为 4;对于卷积层 3,代表通道为 8。
3. 2　 两级合并通道集合选择

　 　 为了找到每一层与代表通道相似的通道,本研究结

合两种寻优算法对由这些相似通道构成的通道合并集合

进行搜寻,包括利用粒子群算法广搜寻和利用模拟余弦

退火的细搜寻。 由图 5 和 7 可见,电弧故障波形的映射

为多个脉冲波形,如果其他通道也能映射类似的脉冲波

形,也就意味着其他通道与代表通道存在近似,因此本研

究将脉冲位置、宽度、数量设置为 3 个匹配条件,具体匹

配条件如图 9 所示。

图 9　 基于 PSO 通道合并中相似通道匹配条件

Fig. 9　 Matching
 

conditions
 

for
 

similar
 

channels
 

in
 

PSO
 

channel
 

merging

因 为 希 望 粒 子 群 优 化 算 法 ( particle
 

swarm
 

optimization,
 

PSO)能够尽可能多的找到与代表通道相似

的通道,为每个匹配条件增加了不同的容限并且将适应

度函数设置为整个故障样本匹配个数的相反数,3 个容

限的设定是基于对多个样本在不同通道上进行详细观察

和分析的结果。 综上所述,这 3 个匹配条件共同作用,确
保其他通道卷积特征图的脉冲位置、宽度和数量都与代

表通道数据中的相应特征相似。 匹配具体流程如图 10
所示,寻优后得到的每层合并通道如表 8 所示。

1)基于模拟余弦退火的合并通道细搜寻

由于 3. 2 节基于粒子群的合并通道广搜寻在 3 个匹

配条件中设置了容限,直接使用这些集合进行通道合
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图 10　 基于 PSO 通道合并中每层通道匹配过程

Fig. 10　 Matching
 

process
 

of
 

each
 

layer
 

channel
 

in
 

PSO
 

channel
 

merging

表 8　 PSO 寻优后通道合并集合

Table
 

8　 Channel
 

merging
 

result
 

after
 

PSO
 

optimization

卷积层 通道集合

Layer1

[1,
 

2,
 

3,
 

4,
 

5,
 

7,
 

8,
 

9,
 

10,
 

12,
 

13,
 

17,
 

18,
 

19,
 

20,
 

21,
 

24,
 

26,
 

27,
 

31,
 

32,
 

33,
 

35,
 

37,
 

39,
 

41,
 

46,
 

48,
 

51,
 

55,
 

58,
 

59,
 

62,
 

63,
 

65,
 

69,
 

70,
 

71]

Layer2 [1,
 

3,
 

4,
 

8,
 

11,
 

12,
 

13,
 

15]

Layer3

[1,
 

3,
 

5,
 

7,
 

8,
 

10,
 

11,
 

12,
 

16,
 

19,
 

21,
 

22,
 

23,
 

24,
 

25,
 

26,
 

28,
 

31,
 

32,
 

36,
 

37,
 

39,
 

40,
 

41,
 

44,
 

48,
 

52,
 

55,
 

56,
 

57,
 

59,
 

63,
 

64,
 

66,
 

69,
 

70,
 

71,
 

72,
 

74,
 

76,
 

78,
 

80,
 

86,
 

87,
 

89,
 

90,
 

91,
 

92,
 

94,
 

95,
 

96]

并虽然实现了较强的轻量化,但难以保证对模型性能产

生显著的轻量化效果。 为了进一步提升模型性能,本研

究采用了模拟退火算法精细搜寻显著影响模型性能的通

道集合,从而实现更优的通道合并策略。
适应度函数是模拟退火算法的核心,用于评估不同

通道配置下的模型性能。 本研究设计的适应度函数综合

考虑了模型的验证准确率以及 L1 距离和 KL( Kullback-
Leibler)散度两个鲁棒性指标。 L1 距离用来评估合并前

后模型输出差异,即对于输入样本 x,计算原模型 f(x)和

合并后的模型 g(x)之间输出向量的 L1 距离。 如果这个

距离很小,说明合并操作对输出的影响不大,即模型的鲁

棒性得到了较好的保留。 KL 散度用来衡量合并前后模

型输出分布的变化,如果计算结果较小,则表示合并前后

模型的输出分布高度相似,合并对模型鲁棒性的影响很

小。 计算公式如式(2)所示。

DKL(P Q) = Σ iP( i)log P( i)
Q( i)

(2)

适应度函数如式(3)和(4)所示。
Accuracychange = Accuracyoriginal - Accuracyupdated (3)
Fitness = Accuracychange - βL1·L1Avg - βKL·KLAvg

(4)
这里 Accuracyoriginal 代表 MBconv_NAS_model 的分类

准确率,即未合并前网络的分类准确率,Accuracyupdated 代

表合并后只训练一次的网络分类准确率,只训练一次不

仅是为了单独分析合并对网络性能的影响,同时也是为

了加快计算速度,能在极短的时间完成合并通道的选择。
将两个鲁棒性指标的权重 βL1 和 βKL 均设置为 0. 1。

本研究的更新卷积层权重和偏置方式,具体步骤如

图 11 所示。

图 11　 卷积层权重和偏置更新方式

Fig. 11　 Convolutional
 

layer
 

weight
 

and
 

bias
 

update
 

method

(1) 将代表通道的权重和偏置添加到目标层的

第 1 个通道。
(2)对于每个选定的通道,将其权重和偏置累加到

目标层的第 1 个通道。
(3)归一化权重和偏置。
(4)将未选定的通道权重和偏置复制到目标层的其

余通道。
经模拟余弦退火合并通道细搜寻,得到模型最终合

并的通道集合如表 9 所示,经过两级通道合并,得到的合

并集合保有了合并前网络的鲁棒性,合并操作对模型的

性能影响最小。
综上,沿用 2. 1 节超参数的设置训练网络,得到最终

电弧故障检测模型在测试集上的分类准确率为 97. 98% 。
最优网络参数如表 10 所示。 将此网络命名为 MBconv_
Merge_Channels_model,即 MBconv_MC_model。

2)合并前后模型性能验证

在模型通道合并过程中,模型性能与信息损失往往

难以规避。 本研究利用信息熵指标,剖析通道合并前
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　 　 　 　 表 9　 最终合并的通道集合

Table
 

9　 The
 

final
 

merged
 

channel
 

set

卷积层 通道集合

Layer1
[37,

 

27,
 

48,
 

8,
 

70,
 

1,
 

65,
 

33,
 

19,
 

59,
 

21,
 

3,
 

51,
 

39,
 

35,
 

46,
 

17,
 

10,
 

4,
 

9,
 

13,
 

41,
 

26,
 

62,
 

2,
 

55,
 

5,
 

31]

Layer2 [8,
 

3,
 

12,
 

4,
 

13,
 

11,
 

1]

Layer3

[22,
 

11,
 

21,
 

56,
 

48,
 

28,
 

26,
 

31,
 

91,
 

39,
 

78,
 

32,
 

19,
 

24,
 

23,
 

10,
 

63,
 

76,
 

66,
 

71,
 

90,
 

92,
 

8,
 

1,
 

40,
 

89,
 

64,
 

55,
 

70,
 

87,
 

12,
 

44,
 

72,
 

94,
 

59,
 

3,
 

36,
 

5,
 

41,
 

7,
 

95]

表 10　 最优网络参数

Table
 

10　 Optimal
 

network
 

parameters

各层结构 卷积核大小 输出维度

Conv1 7×1×1×45

Max
 

pooling1 2×1 499×45

Conv2 5×1×45×10

Max
 

pooling2 2×1 124×10

Conv3 3×1×10×56

Max
 

pooling3 2×1 62×56

1×1×56×168

MBconv 3×1×168

1×1×168×56 62×56

AdaptiveAvg 1×56

Flatten 56

FC 56×2 2

后模型各层的平均信息变化。 具体结果如表 11 所示,合
并后模型各层信息熵虽有下降,但波动并不显著。 这表

明通道合并策略确实导致了一定程度的信息减少,不过

尚在可控范围,未对模型的检测性能产生较大影响。 值

得注意的是,模型在通道合并后检测时间大幅缩短,这意

味着在模型设计与优化中,成功找到了信息保留与检测

效率间的理想平衡点。
单一的信息熵指标在阐释模型信息变化方面存在

局限性。 为此,本研究对通道合并前后模型对故障特

征的关注程度进行对比分析。 具体结果如图 12 所示,
可见,经通道合并后的模型所输出的

 

CAM
 

图依然能够

聚焦于故障特征,与合并前保持相似的关注态势。 从

侧面验证了即便在合并过程中出现一定信息损失,但
模型对于关键故障特征的感知与表征能力并未受到实

质性削弱。

表 11　 合并前后模型性能验证

Table
 

11　 Model
 

performance
 

validation
 

before
 

and
 

after
 

merging

模型 MBconv_NAS_model MBconv_MC_model

第 1 层信息熵 10. 41 9. 90

第 2 层信息熵 7. 57 7. 07

第 3 层信息熵 8. 52 7. 79

MBconv 层信息熵 12. 54 11. 76

检测准确率 / % 98. 08 97. 98

检测时间 / ms 24 5

图 12　 图 5 样本
 

MBconv_MC_model 输出的 CAM
Fig. 12　 Fig. 5

 

CAM
 

of
 

sample
 

MBconv_MC_madel
 

output

　 　 综上,本研究的整体工作流程为:首先通过电弧故障

检测平台采集到电源电压数据,然后通过时频域特征提

取,发现了基于传统机器学习构建检测模型存在困难,接
着通过 NAS 以及通道合并技术,实现了对初始电弧故障

检测模型 MBconv_Initial_model 可解释的轻量化,在检测

精度牺牲不大的同时提高了模型检测的实时性。

4　 模型性能分析

4. 1　 模型泛化性验证

　 　 由于本研究检测模型的训练样本全部来源于电机匀
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速运行时,为进一步对模型的泛化性能进行测试,选取

表 2 中制冷制热两种工作模式下,电机不同速度时正常

和电弧故障样本各 500 个,对 MBconv_MC_model 进行测

试。 结果如表 12 所示,所提出的电动汽车电弧检测模型

在电动汽车其他工作模式下,仍然可以保持较高的电弧

故障检测能力,具有一定的泛化性。

表 12　 模型泛化性能评估

Table
 

12　 Model
 

generalization
 

performance
 

evaluation

工作模式 分类准确率 / % 样本数

制热(故障和正常) 97. 90 1
 

000

制冷(故障和正常) 98. 00 1
 

000

　 　 在电动汽车的实际应用场景中,电压互感器采集的

数据常受到多种噪声干扰。 白噪声由电子设备内部的散

粒噪声和热噪声引起,具有全频段特性;乘性噪声由于环

境因素变化导致互感器变比等参数变动而产生,表现为

与信号大小相关的乘法操作;尖峰噪声是外部电磁辐射

通过感应或耦合方式进入测量回路后,形成瞬时尖峰干

扰。 本研究在电压互感器分别受白噪声、乘性噪声和尖

峰噪声影响情况下,对模型检测性能进行了验证。 同时,
考虑到电动汽车实际运行场景的复杂性,其行驶状态多

为非匀速,且受天气状况影响,运行过程中可能启用雨刮

器。 为此,本研究将电动汽车的加速、减速工况以及不同

雨量下雨刮器工作时的情况也纳入测试范围,评估模型

在这些场景下的性能表现,其中每种测试样本的数量各

500 个。 测试结果如表 13 所示,模型的鲁棒性较好,有
一定的抗干扰能力。

表 13　 模型鲁棒性能评估

Table
 

13　 Model
 

robust
 

performance
 

evaluation

工作模式 系统状态 参数设置 分类准确率 / %

加速 正常 99. 80

减速 正常 100. 00

雨刷器高档位 正常 100. 00

雨刷器低档位 正常 99. 80

白噪声 正常、电弧故障 std= 0. 05 92. 60

乘性噪声 正常、电弧故障
mean= 1
std= 0. 1

91. 00

尖峰噪声 正常、电弧故障

std= 0. 1
spike_frequence=

0. 005
95. 80

4. 2　 搜索空间外模型对比

　 　 由于 NAS 的搜索空间存在组合爆炸问题,难以覆盖

所有可能的网络结构。 为验证所设定搜索空间的有效性

及搜索结果的可靠性,本研究同时对比了多个搜索空间

之外的网络结构的参数量和检测性能,本研究定义了一

种网络结构变体 NAS-x. y,其构建方式为在 MBconv_NAS_
model 的基础上,仅将第 x 层的卷积核替换为 y,而其余各

层卷积核保持不变。 这种设计能够精准地观察各层卷积

核变化对模型整体性能的影响。 MBconv_NAS_model 和

NAS-x. y 对比结果如表 14 所示,在检测准确率相差不大的

情况下,MBconv_NAS_model 模型的参数量达到最小,满足

搜索目标中的时间度量的约束,表明 NAS 能够在有限的资

源下,找到性能优异且接近全局最优解的模型结构。

表 14　 不同模型不同模块参数量对比

Table
 

14　 Comparison
 

of
 

parameter
 

quantities
 

for
 

different
 

models
 

and
 

modules

模型 总参数量 准确率 / %

MBconv_NAS_model 69
 

794 98. 08

NAS-1. 11 70
 

082 97. 38

NAS-2. 11 76
 

706 98. 29

NAS-3. 11 82
 

082 97. 78

NAS-1. 13 70
 

226 97. 98

NAS-2. 13 79
 

010 98. 08

NAS-3. 13 85
 

154 97. 48

4. 3　 与其他故障电弧检测方法对比

　 　 将本研究方法与其他电动汽车电弧故障检测模型进

行对比分析,文献[2,5]
 

基于传统信号处理方法完成电

弧故障检测,文献[2]
 

侧重于通过滤波和小波变换直接

处理原始数据,然后统计小波变换结果中连续超过阈值

窗口的数量,以确定串联电弧的出现,而不是通过训练模

型完成故障诊断。 文献[5]
 

通过选择 12 个时频域特征,
并将特征子集放入随机森林完成电弧故障检测。 这类方

法虽然有效,但在电动汽车复杂环境下的适应性和精确

度有限,并且需要人为选择特征,这增加了工作量和实现

难度。 文献[3-4]
 

为电动汽车的深度学习检测模型。 文

献[24]
 

为已有的深度学习电弧故障检测方法,直接使用

原始数据提取电弧故障特征,并在树莓派中验证了模型

检测的实时性。 文献[29]
 

为已有的轻量化电弧故障检

测方法。 对比结果如表 15 所示,基于深度学习和随机森

林模型完成电动汽车电弧故障检测,准确率都在 80% 以

上,但上述方法检测时间都长于本研究方法,同时最终模

型相较于 MBconv_Initial_model 在提升准确率的同时,检
测时间为原来的 45. 5% 。 将本研究最终电弧故障检测模

型 MBconv_MC_model 下载到树莓派后,每个测试样本的
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平均检测时间为 5. 46 ms, 远小于 UL1699 中规定的

2. 5 s。 综上,本研究提出的方法对真实电动汽车电弧检

测的准确性和实时性表现良好。

表 15　 不同模型分类准确率对比

Table
 

15　 Comparison
 

of
 

classification
 

accuracy
 

among
 

different
 

models

方法 分类准确率 / % 检测时间 / ms

文献[2]
 

51. 61 26

文献[3]
 

87. 10 848

文献[4]
 

91. 94 38

文献[5]
 

88. 41 245

文献[24]
 

90. 12 35

文献[29]
 

84. 78 26

MBconv_Initial_model 95. 67 11

MBconv_NAS_model 98. 08 24

MBconv_MC_model 97. 98 5

　 　 在实际场景中,电动汽车电弧故障检测系统可能需

要处理大量数据以进行实时监测电弧故障,模型的计算

参数量同样是衡量模型性能的重要指标,因此本研究对

比了 MBconv_MC_model 与其他基于深度学习的电弧故

障检测模型的参数量,以直观对比分析检测模型对于大

量数据的处理能力。 具体结果如表 16 所示,表 16 的结

果表明 MBconv_MC_model 参数量最少,能够有效降低内

存开销、减少计算复杂度,适合实际车载系统的信号处理

需求。

表 16　 不同模型参数量对比

Table
 

16　 Comparison
 

of
 

parameter
 

quantities
 

for
 

different
 

models

模型 总参数量 准确率 / %

本研究模型 25
 

188 97. 98

文献[3]
 

134
 

268
 

738 87. 10

文献[4]
 

135
 

602 91. 94

文献[24]
 

157
 

378 90. 12

文献[29]
 

46
 

402 84. 78

5　 结　 　 论

　 　 本研究以吉利
 

EV450
 

电动汽车为基础搭建电弧故

障实验平台,实际分析了电动汽车电弧故障情况。
1)本研究对误判样本的类激活图权重分析发现,样

本误判原因是因为模型对噪声关注程度较高。 因此在模

型优化过程中将可解释性作为模型优化指标之一。
2)为兼顾模型准确性、实时性和可解释性,添加准确

性、可解释性和浮点运算效率作为评价指标,对初始网络

模型 MBconv_Initial_model 进行全局网络结构搜索,建立

MBconv_NAS_model。
3)为进一步对网络结构进行轻量化设计,本研究结

合 DTW 设计相似度度量进行代表性通道选择,并通过粒

子群算法、模拟余弦退火算了实现了两级通道合并,建立

了最终的网络模型 MBconv_MC_model。
4)通过与现有电弧故障检测方法及初始模型的对

比,表明
 

MBconv_BC_model
 

在电动汽车电弧故障检测方

面性能优异。
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