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Research on misalignment tolerance of concave planar spiral coils
for wireless power transfer systems

Yang Yi,Lin Zhihao,Zhang Lu,Li Haixiao,Zhou Zhaoyi
(School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China)

Abstract:To address the decline in coupling coefficient and transmission efficiency of traditional flat solenoidal magnetic coupling
structures in wireless power transfer (WPT) systems under lateral misalignment, this article proposes an engineering-oriented concave
flat solenoidal coil design method with enhanced misalignment tolerance. First, based on the first harmonic approximation (FHA) , the
voltage gain characteristics of typical compensation topologies are analyzed, and an analytical relationship between voltage gain G and
mutual inductance M is established. It shows that reducing the sensitivity of M to lateral displacement can improve system tolerance to
misalignment. Secondly, from the perspective of coil arrangement, the effects of winding distribution, turn spacing, and concave end
angle on magnetic field uniformity and coupling coefficient retention are investigated, and trade-off and optimization methods are
proposed. Subsequently, magnetic coupling structures are modeled in Ansys/Maxwell, and their magnetic field distributions and coupling
variations under lateral misalignment are compared. The results shows that a non-uniform winding distribution with a 30° concave end
angle can maintain a high coupling coefficient and stable transfer performance under +60% lateral displacement. For lightweight and
integrated design, the secondary side is implemented with a flexible printed circuit board ( FPC) coil, meeting the miniaturization and
high-power density requirements of medium- and small-scale portable devices. Finally, a 100 W prototype shows that within a
misalignment range of +15 mm along the X-axis and +30 mm along the Y-axis, output voltage fluctuation is within 4% , and maximum
transmission efficiency reaches 87.3%. These findings validate the effectiveness and engineering applicability of the proposed magnetic
coupling structure in enhancing lateral misalignment tolerance and system performance.
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Fig. 1 Equivalent circuit model of the compensation topology
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Fig.3 Planar magnetic field distribution of a

conventional flat solenoidal coil
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(b) Diagram of the winding structure of the receiver coil
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Fig.4 Concave flat solenoidal coil magnetic coupling

mechanism
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Fig. 11 XY-plane B-field distribution of multi-topology
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Fig. 12 Magnetic field distribution of the coupling

structure in the frontal plane

& 13 AU IBTE Y 3l IE D7 MRS 30 mm B () f
TN 5 B A3 AT L B BE A e A% T 000 T G e ek 3% T
T Y A T SR TR AR A AR RO
TSR N (7B /IBE ) 4k, mE B3 f i 22, SO & &



5510 1]

X

B 28 G MR i SR LR I B D B R REDT ST 149

BOEOR RE R A 980N, 31X — 1R B ML 11 28 30° BIRE 5

U BT PERE A5 2 1 4 i RESs:

B [uTesla]
Wax 2,000,000

K 13 Y 3IEF w30 mm I RES0AR

Fig. 13 Magnetic field distribution in the plane with a 30 mm

positive Y-axis offset

P 14 e BBl e X ey ] EAWAS 15 mm B Y
T RV 5 JBE A P, e W 2R B AR SR B8 A A A F Wi 1) K
SSYER T 1A L DR O i R SRR AS DR A AN 1 ] T 2R
124 30° f) Ji PR L A4S RERR S HLIIESE 1 s P IR R AT 4%
AU7E X b o] )BT AR

FARNENE — e -

B 14 X HOEJ5 w15 mm SRR 50 150

Fig. 14 Magnetic field distribution on the plane with a 15 mm

offset along the positive X-axis
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Table 2 CCRR reduction of magnetic coupling mechanisms
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Fig. 16  Variation of CCRR for different coupling structures

with a 15 mm offset along the positive X-axis
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Table 6 Parameters of the concave-type coupling

structure with a 90° port angle
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Fig. 18 Magnetic coupling structure and receiving coil ®7 MERONCEBSNES

Table 7 Parameters of the concave-type coupling
(4 REEESY structure with a 30° port angle
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the 30° coupling mechanism WPT system
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Table 8 Comparisons with existing methods

Sk R-BRE RMERIEE R mm (RS 5/ CCRR B/ %
X:300(37.5%)
[21] CP-CP S-S @800 0.29 =91
¥:300(37.5%)
X:180(35.2%)
[22] DD-BP LCC-LCC 512x248 0.20 =381
Y.75(30. 24% )
X:160(40. 0% )
[23] LCT-TC 1.CC-LCC 450x400 0.32 =9
¥:180(40. 0% )
X:120(60. 0% )
[24] GFSP-GFSP LCC-S 200%200 0.51 =80
Y:120(60. 0% )
X:100(50. 0% )
[25] CU-CU LCC-S 200%200 0.68 =60
¥:100(50. 0% )
X:30(60. 0% )
AL FSP-FSP LCC-S 100x50 0.83 =84

Y:60(60. 0% )
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