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摘　 要:随着混合信号芯片的复杂性不断提高,芯片测试项数量也大幅增加。 然而,快速的芯片生产周期和短暂的产品寿命严

格限制了工程师可获得的测试时间。 现有测试项优化方法依赖于芯片完整的测试结果,特别是来自缺陷芯片的测试结果。 但

是在“错误即退出”这种机制下,很难获取缺陷芯片完整的失效表征,使得现有方法与广泛采用的芯片测试机制不兼容。 另一

种过程能力指标,因为其假定结果呈正态分布,限制了其对非正态分布场景的适用性。 针对这些局限性,提出了模糊综合评价

法,该方法综合了测试项带来的信息增益、测试结果分布特点、与指标上下限的远近,可适用于更多种类的测试项评估。 与以往

的方法不同,所提方法仅利用无缺陷芯片数据库进行相关指标参数计算和识别信息量较少、冗余的测试项目,并兼容“错误即

退出”机制。 该方法在两个不同混合信号芯片的筛选测试和终测过程中进行验证。 实验结果表明,增加额外信息增益成本的

模糊综合评价法可有效处理非正态分布的测试项,并在保持极低缺陷逃逸率的同时,缩短芯片筛选测试时间 66. 23%以上,缩短

芯片终测时间 28. 12% 。 所提方法成果为混合信号芯片测试优化提供了可扩展的高效解决方案,减少了对缺陷芯片特征描述的

依赖,提高了大批量芯片制造、筛选过程中的测试效率。
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Abstract:With
 

the
 

increasing
 

complexity
 

of
 

mixed-signal
 

chips,
 

the
 

number
 

of
 

test
 

items
 

has
 

also
 

grown
 

significantly.
 

However,
 

rapid
 

production
 

cycles
 

and
 

shortened
 

product
 

lifespans
 

impose
 

stringent
 

constraints
 

on
 

the
 

time
 

available
 

for
 

engineers
 

to
 

refine
 

the
 

testing
 

strategies.
 

Existing
 

methods
 

primarily
 

rely
 

on
 

fully
 

characterized
 

results,
 

particularly
 

from
 

failed
 

chips,
 

making
 

them
 

incompatible
 

with
 

stop-on-first-failure
 

mechanism
 

where
 

complete
 

failure
 

characterization
 

is
 

impractical.
 

Another
 

widely
 

used
 

index,
 

the
 

process
 

capability
 

index,
 

assumes
 

normally
 

distributed
 

results,
 

limiting
 

its
 

applicability
 

for
 

non-normal
 

characteristics.
 

To
 

address
 

these
 

limitations,
 

this
 

paper
 

proposes
 

a
 

fuzzy
 

comprehensive
 

evaluation
 

method.
 

It
 

integrates
 

the
 

extra
 

information
 

gain
 

cost ( EIGC ),
 

the
 

distribution
 

characteristics
 

of
 

test
 

results,
 

and
 

the
 

proximity
 

to
 

upper
 

and
 

lower
 

limits
 

of
 

metrics,
 

making
 

it
 

applicable
 

to
 

a
 

wider
 

range
 

of
 

test
 

item
 

evaluations.
 

Unlike
 

previous
 

methods,
 

our
 

approach
 

solely
 

utilizes
 

the
 

database
 

of
 

passing
 

chips
 

to
 

compute
 

EIGC,
 

enabling
 

the
 

identification
 

and
 

removal
 

of
 

less
 

informative
 

test
 

items
 

without
 

requiring
 

failed
 

chip
 

data,
 

and
 

therefore
 

suitable
 

for
 

stop-on-first-failure
 

mechanism.
 

The
 

methodology
 

has
 

been
 

validated
 

on
 

the
 

binning
 

processes
 

and
 

final
 

test
 

of
 

two
 

different
 

mixed-signal
 

chips.
 

Experimental
 

results
 

show
 

that
 

the
 

fuzzy
 

comprehensive
 

evaluation
 

method
 

with
 

EIGC
 

information
 

can
 

effectively
 

handle
 

non-normally
 

distributed
 

characteristics,
 

and
 

achieves
 

test-time
 

reductions
 

of
 

66. 23%
 

and
 

28. 12% ,
 

respectively,
 

in
 

the
 

chip
 

binning
 

process
 

and
 

final
 

test,
 

while
 

maintaining
 

an
 

extremely
 

low
 

defect-escape
 

rate. Our
 

findings
 

provide
 

a
 

scalable
 

and
 

efficient
 

solution
 

for
 

mixed-signal
 

chip
 

test
 

optimization,
 

reducing
 

reliance
 

on
 

failure
 

characterization
 

and
 

improving
 

test
 

efficiency
 

in
 

high-volume
 

manufacturing
 

environments.
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0　 引　 　 言

　 　 为了确保芯片的可靠性,检测出芯片中的非理想特

性和功能、性能缺陷,越来越多测试项被采纳,更全面的

芯片测试同时带来了更多的时间和资源消耗,增加了整

体测试成本。 然而,越来越短的产品上市时间限制了芯

片测试的时间。 据相关文献报道,缩短使用自动测试设

备(automatic
 

test
 

equipment,
 

ATE)测试芯片时间 1 秒 / 百
万个芯片,将可节省高达 60

 

000 美元成本[1] 。 幸运的是

不同测试项之间有很大的相关性,可能覆盖相同芯片故

障模型。 根据国际商业机器公司( international
 

business
 

machines
 

corporation,
 

IBM) 的研究,70% ~ 90% 的测试码

无法检测出被测芯片的任何缺陷可被视作为冗余的测试

码[2] 。 詹文法等[3] 也采用 k 均值等算法优化测试向量集

来缩短测试时间。
在混合信号芯片测试和特征提取方面也有相类似的

现象。 由于微小的加工缺陷或工艺变化会导致多个相关

参数的性能同时下降,因此往往在相关测试项中有类似的

表现,意味着可以在不影响测试质量的前提下删除冗余测

试项。 因此需要测试工程师对测试项进行评价,在保证故

障覆盖率的情况下,最大限度的删减冗余测试项,降低成

本。 这也逐渐成为半导体测试工程中的一个关键挑战。
目前测试厂商在大规模芯片测试时几乎都采用“错误

即退出”的测试机制。 在该机制下,一旦测试项结果超出

用户设定的阈值范围,直接判断该被测芯片为缺陷芯片,
不进行剩余的测试项测试。 一方面用户可通过重新安排

测试顺序,优先执行失败可能性最大的测试项目来节省时

间[4] 。 另一方面,该机制可保护自动测试设备免受意外或

不安全测试条件的影响,避免可能在缺陷芯片中遇到的长

时间高压引脚短路会对 ATE
 

硬件造成不可逆的损坏[5] 。
但是,这种策略不会提升无缺陷芯片的测试效率,因为测

试过程中未遇到异常,不会触发提前退出的机制。
另外一种测试优化策略旨在尽量减少测试项总数。

每个芯片只执行经过筛选后的测试项,而非对被测芯片

规格书上列出的所有参数进行测试。 相较于对测试项重

新排序,此策略同时降低无缺陷芯片和有缺陷芯片的测

试成本。 但是,被测芯片能通过一个优化过后的测试项

子集并不一定意味着其能通过全部测试项。 这也因此带

来了缺陷芯片被漏检的风险,尤其是在过分追求测试成

本最小化的情况下。
支持向量分类算法

 

( C-support
 

vector
 

classification,
 

C-SVC) [6] 采用线性和非线性高斯核对高维测试空间中

的缺陷区域进行建模和分类划分。 在此基础上,加权方

案迭代算法被提出用于评价单个测试项目在故障检测中

的相对重要性,并移除排名最低的测试项目[7] 。 多目标

遗传算法(genetic
 

algorithm,
 

GA)将特征选择和二元分类

的框架相结合。 该遗传算法旨在通过联合最小化测试成

本和预测误差,在原始测试集中寻找遍历一个具有成本

效益的子集[8] 。 侯琳杰等[9] 应用神经网络根据已测量的

测试项积分非线性( integral
 

non-linearity,
 

INL)结果预测

未测量的信噪比测试项。 离散傅立叶变换方法结果也被

用于预测芯片动态参数[10] ,进一步减少了测试项数量。
但是以上算法均需用到有缺陷芯片的各个测试项的异常

信息用作模型训练,这与“错误即退出”的测试机制相矛

盾。 在该机制下,每个芯片只可获取最多一个失效测试

项的测试结果。
除了以上基于全数据集的测试项评价方法,另一种

广泛使用的方法是过程能力指数
 

( process
 

capability
 

index,
 

Cpk) [11-13] 。 Cpk
 假设测试结果为正态分布,并量化

测量参数分布与该测试项上下限的接近程度。 主要优点

在于其不需要缺陷芯片的全测试项结果,可只依赖合格

芯片的测试数据。 但是,并非所有性能参数都遵循正态

分布,导致此方法的适用性受到很大限制。
为了解决芯片质量预测中缺乏缺陷芯片全测试项测

试结果的问题,之前的工作提出了额外信息增益成本
 

(extra
 

information
 

gain
 

cost,
 

EIGC)
 

指标用于测试项排

序[14] 工作。 该方法基于测试项间的相关性,优先测试非

相关的测试项。 本文进一步根据其表征的每个测试项所

贡献的信息增量及其测试资源消耗情况来评估其测试价

值。 但是该方法仅考虑信息增益,未考虑用户设置的上

下边界对测试结果的影响。
本文的主要贡献为:
1)

 

引入
 

EIGC
 

指标用于测试项评价和优化工作。 在

“错误即退出”的测试机制下,不需要缺陷芯片的完整特

性信息的情况下,也能量化每个测试项所贡献的新信息

和消耗的测试资源。
2)

 

结合 Cpk
 指数和正态分布性评判,提出全分布过

程能力指数
 

(normalize
 

process
 

capability
 

index,
 

NCpk),并
采用模糊综合评价法( fuzzy

 

comprehensive
 

evaluation) 引

入
 

EIGC
 

指标,既考虑被测芯片规格参数和测试项之间

相关性对测试项优化的影响,又可用于非正态分布数据

集,增加算法灵活性和鲁棒性。
3)

 

在两种类型的混合信号芯片上验证本方法的有

效性。 实验结果表明芯片在不同温度下的筛选测试和芯

片终测均适用所提出的测试项优化评价方法。
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1　 基础理论

1. 1　 芯片测试流程

　 　 随着芯片应用的不断扩展,不同使用者在不同使用

环境下对相同芯片产生了不同的要求,第三方独立测试

机构(如上海伟测) 也因此得到蓬勃发展。 相较于芯片

生产测试可通过扫描链,将测试资源合理有效的分配给

各内部功能模块[15-16] ,在第三方测试中,筛选测试厂商无

法获取相关信息,导致无法获得精确的芯片故障模型,应
用故障分类算法进行故障诊断[17] 。

在早期测试阶段,厂商更注重用最少的测试资源进

行芯片测试,例如动态设置可接受的工作电流等参数阈

值[18] ,此时一定的缺陷芯片逃逸通常是可以接受的,因
为在之后的板级、系统级等测试阶段可以进一步检测未

捕获的边缘缺陷类型,最终将总的缺陷芯片逃逸率控制

在可接受的低水平[19-20] 。
图 1 展示了混合信号芯片实际测试和特征参数提取

场景。 其中三温分选机(型号 DX2000)将被测芯片从托

盘中装载到测试夹具中。 它还能提供可靠性测试中的应

力条件,例如低温
 

( -55℃ )
 

和高温
 

(125℃ )。 在测试结

束后,它也会根据测试结果将芯片移到指定的盒中。
ATE 设备(型号 Advantest

 

V93000)用于生成数字测试向

量、并检查被测芯片的数字响应。 任意波形发生器用于

提供锯齿波、正弦波等模拟输入。 示波器或频谱分析仪

对被测芯片的模拟输出进行采样。 插座和载板用于连接

被测芯片和测试设备。

图 1　 混合信号芯片实际测试场景

Fig. 1　 Real
 

test
 

scenario
 

for
 

a
 

mixed-signal
 

chip

1. 2　 过程能力指数

　 　 作为一种评估测试项出错概率的方法,Cpk
 被广泛应

用于工业测试中。 在数学上,它被定义为测试结果平均

值距离最接近上下边界的值并与 3σ 方差比值,如式(1)
所示。

Cpk = min
USL - μ

3σ
,μ

- LSL
3σ

é

ë
êê

ù

û
úú (1)

其中,σ 和 μ 分别代表各测试项目特性分布结果的

方差和平均值;USL 和 LSL 分别表示被测芯片该规格参

数上限和下限。

与其他测试集评价算法不同,Cpk 指标不依靠缺陷器

件的完整特征数据。 相反,其利用已知良好芯片的测试结

果分布即可进行缺陷率预测,同时缺陷器件中观察到的首

个异常测试项数据也可作为预测的有力补充。 此方法优

势在于其充分考虑了芯片规格参数对测试结果的影响。
Cpk 指标本质上基于测试数据为正态分布的假设。 然而,
根据本文的研究发现,这种假设在实践中并不总是成立的。
这导致在非正态分布的情况下,即使设置的 Cpk 阈值足够

高,仍然有超高的缺陷芯片逃逸率。 因此,不同的 Cpk 阈值

选取很大程度影响了预测的精度和优化的效率,增加了对

专家知识准确性的依赖,降低了测试算法的通用性。
为了更好的应用 Cpk 指数,本文通过评估测试结果

是否符合正态分布(包括数据分布的偏度、峰度和拖尾情

况,如式(2)所示),来限制其使用场景,进而减少对非正

态分布测试项的优化。

sskew = e
- skew( z)

s0

1. 5

skurt = e
- kurt( z) -3

k0

1. 5

sAD = e
- 1

2 -n- 1
n ∑

n

i = 1
(2i-1)(lnF( z( i)) +ln(1 -F( z(n+1-i))))[ ]

ì

î

í

ï
ïï

ï
ïï

(2)

其中,n 为样本数量,z( i)为排序后的第 i 个样本测

试结果;F(·) 为理论分布的累积分布函数;skew 和 kurt
定义如式

 

(3)
 

所示。

skew =

1
n ∑

n

i = 1
(x i - 􀭰x) 3

1
n ∑

n

i = 1
(x i - 􀭰x) 2( )

3 / 2

kurt =

1
n ∑

n

i = 1
(x i - 􀭰x) 4

1
n ∑

n

i = 1
(x i - 􀭰x) 2( )

2

ì

î

í

ï
ï
ï
ï
ï

ï
ï
ï
ïï

(3)

以上评价中,三者皆在[ 0,1]
 

范围,越大越“ 像正

态”,故采用几何平均,如式
 

(4)
 

所示,使得每个子分数

的不足会被放大,保证“短板效应”。

SN = (Sw1
skewS

w2
kurtS

w3
AD),　 w1 + w2 + w3 = 1 (4)

本文以此提出 NCpk 指数,如式(5)所示,当正态分布

评价低于阈值时 NCpk 衰减至 0,即判定该测试项优化工

作不适用于此方法;超过阈值后 NCpk 逐步恢复到 Cpk,意
味着可用于之后的测试项优化工作。 在第 2 章的实测数

据验证中,实验结果也表明修改后的 NCpk 指数更具备通

用性和有效性。

NCpk = Cpk·max 0,
SN - τ
1 - τ( ) (5)

1. 3　 额外信息增益成本

　 　 和 Cpk 指数一样,EIGC 同样仅利用无缺陷被测芯片的

测试结果来分析每个测试项目获取的额外信息和相对应
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的测试成本开销。 其主要思路是采用正交三角分解法得

出信息增益。 更具体地说是将新测试项目 tnew 投影到由之

前的测试项 told1 和 told2 所创建的超平面上,如图 2 所示。
其中,tv 代表与新测试项获取的新的被测芯片特征信息,而
tp 代表可通过先前测试项目中推理得到的先验信息。

图 2　 新测试项向量 tnew 投影

Fig. 2　 Projection
 

of
 

the
 

new
 

vector
 

tnew

为了使得所采集到的数据进一步标准化以及可以更

好地进行正交分解,对每个样本的数据进行去中心化处

理。 由于测试项数量远高于被测芯片的数量,所获得的

矩阵不为方阵,无法进行正交分解,所以本文采用奇异值

分解[21](reduced
 

singular
 

value
 

decomposition)的方法将原

始矩阵 A 分解为正交矩阵 U、对角矩阵 S 和正交矩阵 V
的转置的乘积,如式(6)和(7)所示。

A ∈ Rn×p,　 n ≥ p,　 A = Un×pSp×pV
T
p×p (6)

u i = [u1i u2i … uni] T (7)
其中,p 代表测试项目总数。 由于其互为正交,原始

数据矩阵可压缩为 p×p 矩阵 T0,如式
 

(8)
 

所示。
T0 = UT

n×pAn×p = Sp×pV
T
p×p (8)

为了获取新测试项向量在超平面中的投影分量,采
用吉文斯旋转法通过一系列旋转将给定矩阵 T0

 转换为

正交矩阵 Q[22] 。 例如,为了将向量从第
 

p th
 

维旋转到第
 

(p-1) th 维,需要将吉文斯矩阵 G1(p-1,
 

p,
 

θ1 )
 

与 T0
 相

乘。 其中,θ1 表示向量旋转的角度。 通过适当地选择

θ1,tp,1 可以变为 0,同时由于 GTG = I2,所以其为正交矩

阵,这意味着第 1 个测试项目的第 p 个维度上的所有信

息都被旋转投影到了( p-1)个维度上,从而获取了测试

项的信息增益。

Ti =

ti1,1 ti1,2 ti1,3 … ti1,i ti1,i +1 … ti1,p

0 ti2,2 ti2,3 … ti2,i ti2,i +1 … ti2,p

0 0 ti3,3 … ti3,i ti3,i +1 … ti3,p

︙ ︙ ︙ ⋱ ︙ ︙ ⋱ ︙
0 0 0 … tii,i tii,i +1 … tii,p
0 0 0 … 0 tii +1,i +1 … tii +1,p

︙ ︙ ︙ ⋱ ︙ ︙ ⋱ ︙
0 0 0 … 0 tip,i +1 … tip,p

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
úú

p×p

(9)

同理,第 2 维到第 p 维的所有信息都可以通过以下

方式旋转到第 1 维。 经过不断的吉文斯旋转,等到上三

角矩阵,如式(9)所示。 其中,t i+1,i+1 到 tp,i+1 表示新测试

项中无法由前 i 个测试项表示的分量,相反,t1,i+1 到 t i,i+1

表示已从前
 

i 个测试项获取的信息分量。 基于此,额外

信息增益定义为式(10),即:

E(Ti) =
(tii +1,i +1)

2 + (tii +2,i +1)
2 + … + (tip,i +1)

2

(ti1,i +1)
2 + (ti2,i +1)

2 + … + (tip,i +1)
2 (10)

考虑到每个测试项目所需的测试时间和测试资源消耗

各不相同。 因此,为了更好地评价整个测试过程的效率,
额外信息增益成本 EIGC(Ti )

 

被定义为
 

E(Ti ) / G(Ti),
其中,E(T i)

 

指测试项目 i 所提供的额外增益,G(T i)
 

代

表其成本,包括测试时间和人力资源。 总之,EIGC(T i )
 

可作为测试项优化的指南,其中数值最小的测试项目将

被删除。
1. 4　 模糊综合评价法

　 　 EIGC 测试项评价方法考虑了信息增益成本和测试

项之间的相关性,而 Cpk 指数则侧重于单个测试项结果

的分布特性与其对应的阈值设置。 为了充分结合这两种

算法的优势,本研究进一步提出了一种模糊综合评价法。
如图 3 所示,横条和竖条背景块分别代表基于 Cpk 和基

于 EIGC 方法额外发现的冗余。 如果 Cpk 和 EIGC 阈值选

择不当或测试项数据不符合假定的正态分布,则可能出

现缺陷芯片逃逸的情况,由斜条纹表示。 2. 2 节中的实

验也证实了存在此情况。

图 3　 模糊综合评价法在测试项优化中对逃逸率的影响

Fig. 3　 Impact
 

of
 

the
 

fuzzy-based
 

test
 

set
 

pruning
 

method
 

on
 

defect
 

escape
 

rate

采用模糊综合评价法[23] ,与传统的评价方法相比,
该方法可捕捉人类判断中的模糊性和不确定性,并提供

一个综合框架,将多个阶段的模糊判断结合起来[24] ,软
判定也降低了对阈值的敏感性和专家先验知识的依赖

性。 具体实现流程为:
1)创建因素集,将影响评价对象的各种因素作为元

素所组成的一个普通集合,表示为 U = (u1,u2),其中 u1
 

代表 NCpk 评价方式, u2 代表 EIGC 评价。
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2)建立综合评价的评价集 V = (v1,v2),其中 v1 代表

测试项可优化度,v2 代表其不可优化度。
3)各因素 u i 根据需求分配一个权重 A = (a1,a2)。
4)确定模糊综合评判矩阵 R2×2。 相较于 Cpk 中硬阈

值判定,此处采用如下所示的 Sigmoid 隶属度函数进行软

判定。 其中 a、b 用来定义过渡区间的两端,即对应隶属

度 99. 5% ,并自动换算出中心 c 和尺度 s,r11、r22 对应 u1,
r21、r22 对应 u2。 由于本研究中 V 仅有两元素,即可优化

或不可优化,故 ri1 和 ri2 互为对称。

ri1(x) = 1

1 + exp - x - c
s( )

ri2(x) = 1 - ri1(x)

ì

î

í

ï
ï

ï
ï

(11)

5)通过矩阵合成运算 B = A R 进行模糊综合评判,
本文采用补偿型幂平均算子。 相较于其他算子,幂平均

允许高值对低值一定程度的补偿,但不会像算术平均甚

至“OR(x+y-xy)” 算子一样容易形成假阳性,即轻易判

“可优化”。

bk =
rp1k + rp2k

2( )
1 / p

(12)

本方法引入两个影响因素 NCpk 和 EIGC 指数进行

模糊综合评价,得到最终优化后的测试项子集,并根据

此集合完成剩余芯片的测试工作和缺陷诊断。 由于芯

片不同测试阶段所要求的缺陷芯片逃逸率不同,此方

法同样方便测试人员在不同的测试阶段通过选取不同

权重配比和不同隶属度函数,来获取不同测试项子集,
测试人员也可引入新的评价要素例如资源消耗等,用
于此综合评价法。

2　 实验验证

　 　 本章介绍了对所提出的测试优化算法的实验验证,
并以两款模拟数字转换器

 

( analog-to-digital
 

converter,
 

ADC)
 

芯片为例在筛选过程和终测阶段中通过优化冗余

测试项达到测试时间的节省。 混合信号集成电路的测试

数据通常涉及较高的商业机密,目前没有公开的数据集

可用于对比。 国内外的相关研究均基于自身采集的一个

或两个数据集进行[4,9,19,25] 。 本文中实验使用的被测芯

片来自中国电子科技集团公司第二十四研究所,与其合

作进行全参数测试。 为了进一步推广到“错误即退出”
的测试场景中,本文的训练阶段仅依赖于无缺陷芯片,或
一类(bin

 

one)的良品芯片的测试结果,避免了对缺陷芯

片全面特性分析的依赖。 该数据集用于计算 EIGC 和

Cpk 指标,并根据模糊综合评价法进行优化。 测试项的所

有阈值均根据相应的用户手册确定。 并且为保证算法验

证的公平性, 测试方法遵照电气电子工程师学 会
 

(Institute
 

of
 

Electrical
 

and
 

Electronics
 

Engineers,
 

IEEE)
 

1241 号标准,本文并未优化测试方法本身。 实际缺陷芯

片逃逸率根据式(13) 计算。 其中,Nescape 表示未被经过

优化后的测试集检验出的缺陷芯片数量,N failed 表示真正

缺陷芯片的数量。

rescape =
Nescape

N failed
(13)

2. 1　 ADC 芯片筛选测试

　 　 在本节中,采用一款 250
 

kSPS、6 通道同步采样、
14 / 16 位 ADC 作为被测芯片开展验证。 根据芯片的使用

场景要求,共选择与线性度、噪声表现相关的 30 个动态

及静态参数,作为芯片筛选标准。 为了符合航空航天标

准 IEC / TS
 

62564-1, 本 文 分 别 在 常 温 ( 25℃ )、 低 温

( -55℃ )和高温(125℃ )条件下进行了芯片筛选测试和

算法验证。
在常温下,共有 1

 

012 个被归入 bin
 

one 的芯片,用于

确定各测试项 EIGC 和 NCpk 值;84 个失效芯片用于验证

所提出的方法的有效性。 在高温和低温测试条件下,分
别使用 503 和 506 个芯片用于训练,46 和 42 个缺陷芯片

用于测试。 EIGC 和 Cpk 测试结果分别如图 4、5 所示,其
中方形、圆形和三角形分别表示了常温、低温和高温的测

试结果。 为了更好的展示测试工程师所关注的缺陷逃逸

率细节,图 4 仅展示 Cpk 取值在 0 ~ 3 部分,且仅关注缺陷

芯片逃逸率<0. 2 部分。

图 4　 不同温度下的缺陷芯片逃逸率与 Cpk 、
 

NCpk 阈值的关系

Fig. 4　 rescape
 versus

 

Cpk ,
 

NCpk
 threshold

 

value
 

under
 

different
 

temperature

由于此芯片筛选测试场景仅关注芯片的线性度、噪
声系数相关的测试项,相较于 2. 2 节测试场景,此测试结
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图 5　 不同温度下的缺陷芯片逃逸率与
 

EIGC
 

阈值的关系

Fig. 5　 rescape
 versus

 

EIGC
 

threshold
 

value
 

under
 

different
 

temperature

果分布更具备正态分布特性,因此图 4 所展示的基于 Cpk

和 NCpk 指数的优化结果具备相同的效率。 由图 4、5 可

见,当阈值被合理设置时,两种测试项评价方法均可以实

现在不带来缺陷芯片逃逸的前提下,优化测试项集合。
图 5 也验证了 EIGC 算法的有效性,对应 EIGC 值最低的

测试项对芯片筛选的贡献最小。
在模糊综合评价法中,NCpk 对应的逻辑斯谛隶属

度函数( Sigmoid)中 a、
 

b 分别设置为 0. 5 和 2;在 EIGC
评价中 a、

 

b 分别设置为 10-6 和 10-4 。 相较于传统单一

参数的评估,本文方法采用了更宽泛的阈值设定范围,
具有更广的适应性。 图 6 展示了测试项对应的 NCpk、
EIGC 的评估结果,分别用方形和三角形表示。 综合评

价集 v1 、
 

v2 结果由图 7 所示,v1 、
 

v2 分别使用斜条纹和

横条纹作为背景,由于测试项 19、27 的 EIGC 评估结果

突出,即其未包含足够多的有效新信息,即使其未能在

基于 NCpk 的优化流程中被识别出,在最终的模糊综合

评价法中,仍然判定可对其做优化处理,进一步提升测

试效率。

图 6　 常温下测试项 NCpk 、EIGC 的评估结果

Fig. 6　 Evaluation
 

outcome
 

of
 

NCpk ,
 

EIGC
 

at
 

room
  

temperature

表 1 总结了不同算法下测试时间优化效果以及缺陷

芯片逃逸结果,由于基于 Cpk、NCpk 和 EIGC 优化结果受

阈值有很大影响,所有优化算法都通过提高阈值避免故

障芯片逃逸,测试时间提升统一与全参数测试进行比较。

图 7　 模糊综合评价法下评价集 v1 、
 

v2 结果

Fig. 7　 Results
 

of
 

v1
 and

  

v2
 outcomes

 

under
 

fuzzy
 

comprehensive
 

evaluation

结果表明 Cpk(阈值 = 1. 7) 的优化方法相较于 EIGC(阈

值= 10-5),在测试结果呈现正态分布的情况下更有效,
找到 12 项冗余测试项,大大缩短了测试时间,EIGC 在测

试项优化中更保守,找到 9 项冗余。 基于 NCpk(阈值 =
1. 3)的优化结果和基于 Cpk 的保持一致。 在模糊综合评

价法中,由于其采用软判定,并且结合了两种不同的优化

方式,因此总共挑选出了 14 项冗余测试项,增加测试项

19、27,测试时间缩短 43. 86% 。 表 1 包含了在常见 3 种

高低温下测试结果,由此可见本文提出的模糊综合评价

方法具有通用性。

表 1　 不同测试优化算法比较

Table
 

1　 Comparison
 

of
 

different
 

optimization
 

strategies
(% )

优化算法
测试时间提升比例 逃逸率

25℃ 125℃ -55℃ 25℃ 125℃ -55℃

基于 Cpk 39. 47 45. 88 39. 47 0 0 0

基于 EIGC 10. 68 10. 68 10. 68 0 0 0

基于 NCpk 43. 37 45. 88 43. 37 0 0 0

模糊综合评价 43. 86 50. 27 43. 86 0 0 0

2. 2　 ADC 芯片终测

　 　 在本节中,芯片终测场景被用来验证所提出的测

试项评价、优化方法,该应用场景也可扩展到其他测试

流程,如晶圆测试阶段。 与 2. 1 节仅关注器件线性度

等性能不同,本节选择了另一款 16 位 ADC,包含了芯

片测试规范中完整的 24 个测试项。 同样在模型训练

阶段采用了 590 个被测芯片,用以计算 Cpk、NCpk、EIGC
指标。 随后,又测试了 278 个含缺陷的芯片,用以进行

模型验证。
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测试项 VCM 分布结果如图 8 所示,其对应的 Cpk 指

数最高,即该测试项失败的可能性最小。 然而在仅基于

Cpk 的测试项优化算法中,如果判定该测试项为可优化会

导致 49 个缺陷芯片逃逸,如图 8 中矩形框内测试结果所

示。 由于非正态分布的测试项存在,无法通过合适的 Cpk

阈值设置进行有效的测试项优化,将缺陷芯片逃逸率控

制在可接受的水平,如图 9 左图所示,这一实验结果凸显

了仅依赖 Cpk 值进行测试项优化的潜在隐患。 而在增加

了有关正态分布评价之后,如图 9 右图所示,基于 NCpk

的测试项优化方法能正确识别出 4 项冗余测试项,并且

针对不满足正态分布的测试项 VCM(测试编号 8)SN 也大

幅降低其 NCpk 指数。 因此在该方法下可通过设置合理

阈值保证了优化后故障芯片的低逃逸率。

图 8　 测试项 VCM 在全良品数据库和全数据库下数据分布

Fig. 8　 Data
 

distributions
 

of
 

test
 

items
 

VCM
 in

 

the
 

good-chip-only
 

database
 

and
 

the
 

full-chip
 

database
 

respectively

图 9　 常温下的缺陷芯片逃逸率与 Cpk 、
 

NCpk 阈值的关系

Fig. 9　 rescape
 versus

 

Cpk ,
 

NCpk
 threshold

 

value

相比之下,EIGC 并不依赖于测试表征结果的正态分

布的假设,而是建立在相关性分析的基础上。 如图 10 所

示,当将其阈值同样设置为 10-5 时,缺陷芯片的逃逸率

仍可保持为 0,同时在 24 个测试项中识别了 5 个冗余项,
减少了 28. 12%的测试时间,显示 EIGC 方法具有更大的

灵活性和鲁棒性。

图 10　 缺陷芯片逃逸率与 EIGC 阈值的关系

Fig. 10　 rescape
 versus

 

EIGC
 

threshold
 

value

图 11 对比展示了所有测试项对应的 NCpk、EIGC 的

评估结果。 模糊综合评价结果如图 12 所示,本方法进一

步综合 NCpk 和 EIGC 评估方法,识别出了更多冗余测试

项(测试项 11、13、19),提升测试项优化效率。 并且相较

于传统方法需要遵循正态分布的假设前提,本方法具有

更广的适用范围。

图 11　 测试项 NCpk 、EIGC 的评估结果

Fig. 11　 Evaluation
 

outcome
 

of
 

NCpk ,
 

EIGC
 

at
 

room
temperature

图 12　 模糊综合评价法下评价集 v1 、
 

v2 结果

Fig. 12　 Evaluation
 

v1 ,
 

v2
 outcomes

 

under
 

fuzzy
 

comprehensive
 

evaluation
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表 2 总结了芯片在不同测试项优化算法下测试时间

减少情况及其对应的缺陷芯片逃逸率。 与 2. 1 节一样,
若同样将 Cpk 阈值设置为 1. 167,则会造成 53. 6%的缺陷

芯片逃逸,即使大幅上调阈值至 6,其缺陷芯片逃逸也高

达 17. 63% 。 由于 NCpk 指数识别出不符合正态分布假设

的测试项,根据其优化后的测试集依然能保持 0%的逃逸

率。 得益于软判定设计,模糊综合评价进一步优化测试

项数量,减少测试时间 39. 37% ,且能保持 0% 逃逸率,更
适用于测试项评估优化工作。

表 2　 不同测试优化算法比较

Table
 

2　 Comparison
 

of
 

different
 

optimization
 

strategies

优化算法 测试时间 / s 提升比例 / % 逃逸率 / %

全测试项测试 35. 56 0

基于 Cpk
 (阈值= 1. 167) 10. 32 70. 98 53. 60

基于 Cpk
 (阈值= 6) 35. 54 0. 05 17. 63

基于 EIGC
 

(阈值= 10-5 ) 25. 56 28. 12 0

基于 NCpk
 (阈值= 1) 31. 36 11. 81 0

模糊综合评价 21. 56 39. 37 0

3　 结　 　 论

　 　 针对混合信号芯片提出了一种有效的测试项评价方

法,并通过测试项优化提高测试效率。 该方法拓展了测

试优化算法的使用场景,无需对缺陷芯片进行完整的特

征参数提取,适用于“错误即退出” 的芯片测试场景,从
而解决了现有方法的一个关键局限。 相较于传统 Cpk 指

标依赖于测试表征数据结果遵循正态分布的假设,而

所提出的 NCpk、EIGC 指标无需该假设前提,并且根据

此进一步提出了模糊综合评价法,充分考虑被测芯片参

数规格和测试项之间相关性对测试项优化的影响,结合

各自评估方法的优劣。 在常见的 3 种可靠性应力条件和

不同测试阶段下,以两种类型的混合信号芯片为例进行

了实验验证。 实验结果和理论分析一致,表明本文提出

的模糊综合评价法可实现更高效、更稳健的测试项优化

过程。
目前所提出的测试优化方法仅针对被测芯片整体,

并未针对单个被测芯片的提出个性化测试优化方案。 因

此,未来的研究会根据被测芯片部分测试结果,动态优化

测试项,进一步降低测试成本,并且保证缺陷芯片逃逸

率,提高算法的可靠性和实际应用价值。
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