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摘　 要:故障预测与健康管理(PHM)技术通过监测、分析和预测设备健康状态,实现主动维护和风险规避,是保障系统安全稳

定运行的关键。 尽管基于物理模型和数据驱动的 PHM 方法体系已经较为完整,但是经典方法在面对日渐复杂的工业系统的海

量异构数据,特别是非结构化文本和多模态信息时,仍然存在专家知识集成困难,以及泛化能力不足的短板。 近年来,
Transformer 结构与大语言模型(LLM)方兴未艾,为 PHM 领域内专业知识的有效利用带来新兴的高精度预测范式,其应用潜力

和优势包括但不限于知识提取与整合、少样本学习泛化、智能决策支持等。 为全面综述大语言模型赋能 PHM 的现状及前景,首
先,介绍 PHM 常见任务、Transformer 结构与通用大语言模型基本概念;其次,介绍领域专用大语言模型构建任务中的领域知识

构建与注入方法(包括内部参数优化和外部知识增强),给出 PHM 领域专用大语言模型的整体框架;然后,从部件级、子系统

级、复杂系统级这 3 个层次,并面向任务深入剖析并综述 PHM 领域大语言模型框架与应用现状,包括故障诊断、健康状态估计、
剩余使用寿命预测和异常检测等典型 PHM 领域任务;最后,从模型轻量化、边缘部署、广义复杂系统角度,展望 PHM 领域专用

大语言模型未来应用发展的挑战和机遇。
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Abstract:Prognostics
 

and
 

health
 

management
 

(PHM)
 

enables
 

proactive
 

maintenance
 

and
 

risk
 

mitigation
 

by
 

monitoring,
 

analyzing,
 

and
 

forecasting
 

equipment
 

health,
 

undergirding
 

safe
 

and
 

stable
 

system
 

operation.
 

While
 

physics-based
 

and
 

data-driven
 

PHM
 

paradigms
 

are
 

relatively
 

mature,
 

classical
 

approaches
 

struggle
 

to
 

integrate
 

expert
 

knowledge
 

and
 

generalize
 

when
 

confronted
 

with
 

massive
 

heterogeneous
 

data,
 

especially
 

unstructured
 

text
 

and
 

multimodal
 

information
 

generated
 

by
 

increasingly
 

complex
 

industrial
 

systems.
 

Recently,
 

the
 

rapid
 

development
 

of
 

Transformer
 

architecture
 

and
 

large
 

language
 

model
 

( LLM)
 

have
 

opened
 

a
 

high-precision
 

prediction
 

paradigm
 

that
 

efficiently
 

exploits
 

domain
 

expertise,
 

offering
 

advantages
 

such
 

as
 

knowledge
 

extraction
 

and
 

fusion,
 

few-shot
 

generalization,
 

and
 

intelligent
 

decision
 

support.
 

This
 

review
 

comprehensively
 

surveys
 

the
 

current
 

status
 

and
 

future
 

prospects
 

of
 

PHM
 

empowered
 

by
 

LLM.
 

First,
 

canonical
 

PHM
 

tasks,
 

together
 

with
 

Transformer
 

architecture
 

and
 

general
 

LLM,
 

are
 

introduced.
 

Second,
 

domain-specific
 

LLM
 

construction
 

is
 

elaborated
 

with
 

respect
 

to
 

domain-knowledge
 

creation
 

and
 

injection,
 

covering
 

internal
 

parameter
 

optimization
 

and
 

external
 

knowledge
 

augmentation;
 

a
 

unified
 

framework
 

for
 

PHM
 

domain-specific
 

LLM
 

is
 

presented.
 

Third,
 

current
 

PHM
 

domain-specific
 

LLM-
based

 

frameworks
 

and
 

applications
 

are
 

dissected
 

in-depth
 

from
 

a
 

task-oriented
 

perspective
 

across
 

components,
 

subsystems,
 

and
 

complex
 

systems
 

levels,
 

focusing
 

on
 

fault
 

diagnosis,
 

state
 

of
 

health
 

estimation,
 

remaining
 

useful
 

life
 

prediction,
 

and
 

anomaly
 

detection.
 

Finally,
 

future
 

challenges
 

and
 

opportunities
 

are
 

outlined
 

regarding
 

model
 

compression,
 

edge
 

deployment,
 

and
 

generalized
 

complex
 

systems.
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0　 引　 　 言

　 　 故障预测与健康管理( prognostics
 

and
 

health
 

mana-
gement,

 

PHM) [1-3] 是一种利用先进监测、数据分析,对设

备或系统进行健康状态评估的综合性技术:故障预测通

过分析监测传感器数据评估健康状态,提前发出故障预

警;健康管理则根据故障预测结果,制定维护计划,优化

健康状态。 在航空航天、能源装备等高可靠性需求场景

下,PHM 突破了事后维修、定期维护等传统策略的局限

性,通过预测性维护有效降低运维成本、规避潜在的灾难

性故障,并显著提升系统可靠性与可用性[4-5] 。 经典

PHM 方法大多基于物理模型和解析方法,通过建立系统

退化机理及其数学方程实现预测[6-7] 。 随着图形处理器

(graphics
 

processing
 

unit,
 

GPU) 算力与深度残差网络[8]

的突破性进展,基于数据驱动的 PHM 方法已成为当前的

研究热点,卷积神经网络( convolutional
 

neural
 

network,
 

CNN) [9-11] 的特征提取能力,以及长短期记忆网络( long
 

short-term
 

memory,
 

LSTM) [12-14] 的序列处理能力在 PHM
领域任务中得到广泛应用。 然而,经典方法在面对日渐

复杂的工业系统的海量异构数据,特别是非结构化文本

和多模态信息时,在专家知识集成和泛化性方面短板凸

显[15-16] ,具体表现为:
1)专家知识集成困难。 传统深度学习模型主要擅长

处理结构化或规整的数值型传感数据,但对蕴含丰富领

域专家经验的非结构化文本数据(例如维修日志、故障报

告、操作手册、技术文档)的融合能力十分有限。 研究表

明,工业 PHM 场景超半数有价值信息存储于非结构化文

本中[17-18] 。 关联文本描述特征与传感器频谱特征,需要

复杂的特征工程和先验知识建模,过程繁琐且难以被

CNN、LSTM 等传统模型有效利用[19] ;
2)模型泛化能力不足。 传统模型通常针对特定数据

集和工况,面对设备变型、运行条件变化(例如域偏移)、
数据稀疏(例如罕见故障模式)等场景时,泛化性能急剧

下降[20-21] ;针对数据稀缺的罕见故障(例如长尾分布),
传统模型由于缺乏对领域概念的深层次理解和强大的小

样本学习能力,存在严重的漏报风险[22] 。
大语言模型( large

 

language
 

model,
 

LLM) [23-24] 近年

来,迅速发展,为解决上述挑战提供了新途径,其应用潜

力和优势包括但不限于:
1)知识提取与整合。 LLM 能够直接从海量非结构

化文本中学习语义、抽象实体关系、构建领域知识,有效

整合维修记录、手册等文本信息的专家经验[25-26] ;
2)少样本学习泛化。 LLM 的自注意力机制能够捕

捉长距离依赖和复杂上下文信息,结合大规模预训练中

习得的通用知识,对未见过的设备变体、工况变化、乃至

跨任务,少样本甚至零样本学习场景下,都具有更强的任

务适应性和泛化能力[23,27] ;
3)智能决策支持。 LLM 的文本理解、文本生成和推

理能力,能够作为 PHM 智能决策支持系统一部分,通过

构建问答系统,可自动化生成维护建议和故障排除步骤,
提升维护效率[28] 。

近年来,结合 LLM 的 PHM 方法综述大多聚焦利用

现有大语言模型的通识能力,包括 LLM 辅助的预测性维

护[29] ,LLM 在 PHM 中的优化技术与应用[30] ,以及基于

LLM 的表征学习和故障预测的应用潜力[31] 。 然而,通用

LLM 在 PHM 领域的专业知识相对匮乏,尤其是针对故

障诊断、健康状态( state
 

of
 

health,
 

SOH)估计、剩余使用

寿命(remaining
 

useful
 

life,
 

RUL) 预测、异常检测等具体

任务,缺乏对预期效用和解决方案的深入分析,亟需针对

领域专用大语言模型的框架探索和应用研究。 为归纳概

述 PHM 领域大语言模型“是什么? 为何用? 怎么用?”
的问题,综述 LLM 赋能故障预测与健康管理的研究现状

与应用展望,主要内容包括:
1)简介 PHM 常见任务、通用 LLM 原理、构建方法和

局限性,引入领域专用 LLM 必要性;
2)介绍针对领域专用 LLM 的领域知识构建和注入

方法,建立 PHM 领域专用 LLM 的整体构建框架;
3)从部件、子系统、复杂系统 3 个层次,针对故障诊

断、SOH 估计、 RUL 预测、异常检测等具体任务,综述

PHM 领域专用 LLM 的现有应用和潜在价值;
4)从轻量化边缘部署、广义复杂系统等角度,总结并

展望 PHM 领域专用 LLM 面临的机遇和挑战。

1　 背　 　 景

1. 1　 PHM 常见任务

　 　 在工业系统的运维管理中,PHM 凭借一系列结构化

任务,保障系统的可靠性与安全性[3] 。 故障诊断、SOH
估计、RUL 预测、异常检测是 4 类代表性 PHM 任务,分别

侧重于识别、评估、预测和检测,是实现预防性维护、提升

系统韧性和优化资源配置的关键环节。
1)故障诊断

故障是指设备或系统未能按预期执行其规定功能的

状态或事件。 故障诊断作为 PHM 的基础性任务,其代表

性体现在它在设备出现异常时能够迅速定位问题所在,
并侧重于 PHM 的“识别”部分。 故障诊断通过监测和分

析设备或系统运行状态,及时发现并识别故障模式,为设

备或系统维护和可靠性管理提供支持。
轴承故障诊断是具有代表性的一类故障诊断任务,

在复杂工况下易受磨损、疲劳、润滑不良等因素影响,且
故障特征常表现出复杂性和隐蔽性[32-33] 。 多所高校和科
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研机构均制作了轴承故障诊断相关数据集。 例如凯斯西

储大学数据集 ( Case
 

Western
 

Reserve
 

University
 

bearing
 

dataset,
 

CWRU)共包含内圈故障、外圈故障和滚动体故

障这 3 类故障,每种故障分不同尺寸的人为制造故障点、
不同大小电动机马力。 数据集文件分为正常数据、
12

 

kHz 采样率驱动端轴承故障、12
 

kHz 采样率风扇端轴

承故障、48
 

kHz 采样率电机端轴承故障这 4 类,轴承工作

状态信息均使用加速度传感器采集。
2)健康状态估计

SOH 估计是 PHM 中关注设备当前“健康度”的关键

任务,其代表性体现在为理解设备当前性能衰退程度提

供量化依据,并侧重于 PHM 的“评估” 部分。 SOH 估计

基于电池或其他储能设备的运行数据(如电压、电流、温
度等),精准评估其当前的健康状态。 电池的 SOH 可用

容量衰减的形式量化,定义为电池当前可用电量与初始

状态总电量的百分比,即:

SOH(% ) = 当前电池容量(mAh)
初始电池容量(mAh)

× 100% (1)

通常当 SOH 降低至 80%时,电池达到第 1 次使用寿

命,可在储能电站等领域进行二次利用。 电池的 SOH 估

计对于优化充电策略、延长设备寿命、提高系统可靠性和

安全性,实现预测性维护具有重要意义[34-35] 。
电池 SOH 估计任务的数据集可通过自行搭建实验

平台方式收集建立。 麻省理工学院的 MIT( Massachusetts
 

Institute
 

of
 

Technology)数据集[36] 是目前广泛应用的商业

锂离子电池数据集之一,包含 124 个商业锂离子磷酸铁

锂或石墨电池在快速充电条件下循环的容量数据,循环

寿命从 150 ~ 2
 

300 个循环不等,涵盖不同的快速充电策

略,记录了电池在循环过程中的电压、电流、温度和内部

电阻等信息。
3)剩余使用寿命预测

RUL 预测作为 PHM 中的核心前瞻性任务,其代表

性体现在它直接关乎预防性维护的决策时机,侧重于

PHM 的“预测”部分。 RUL 预测基于设备的运行状态数

据和历史故障信息,精准预测设备剩余的可正常使用时

长,对提高工业部件或系统的可靠性和运行安全性、避免

致命故障、降低维护成本具有重要意义[37-38] 。 RUL 定义

为设备或系统在达到预设的时效阈值,或其预期功能失

效前,所剩余的正常运行时间,即:
RUL = T f - T0 (2)
其中, T0 为当前时间,T f 为预计到达使用寿命终点

的时间, 单位由具体应用场景而定,例如时间( 小时、
天)、循环次数(航空发动机飞行次数循环、电池充放电

循环)、里程数(车辆行驶)等。
美国国家航天局发布的商用模块化推进系统模拟器

( commercial
 

modulur
 

aero
 

propulsion
 

system
 

simulation,

C-MAPSS) 数据集[39] 是 RUL 预测任务训练和测试的经

典基准数据集,模拟了一个商用涡扇发动机,使用温度、
压力、转速等多种类型传感器[7] 。 数据集共包含 4 个训

练集、测试集和真实寿命集构成的子集,每个子集内均有

至少一种工作状态和故障模式。
4)异常检测

异常是指设备或系统运行数据中与预期正常行为

模式显著偏离的事件或模式,是 PHM 中“预警”性质的

任务,能够及时发现与正常行为模式不符的时间或数

据点,侧重于 PHM 的“检测”部分。 与故障诊断中关注

设备未能按预期执行其规定功能的状态或事件不同,
异常检测通过持续监测设备或系统的运行数据,利用

机器学习等方法建立正常行为基线,在新的数据偏离

该基线时触发警报,提示潜在的故障或风险。 因此,异
常检测对于故障前干预、避免系统停机,以及减少损失

方面 至 关 重 要[40-41] 。 SKAB ( skoltech
 

anomaly
 

bench-
mark)数据集是异常检测任务中具有代表性的数据集

之一,通常被视为一个完整的工业系统,包含从测试台

传感器收集的多元时间序列数据( 例如加速度、电流、
电压、温度等) ,并且提供了异常的标签,可用于评估异

常检测方法的性能。
1. 2　 通用大语言模型

　 　 1)Transformer 结构

Transformer 结构[25] 通过自注意力机制计算输入序

列中元素间相关性,以捕捉序列中各元素的依赖关系,从
而处理复杂序列信息,在具有优于循环神经网络的计算

性能的同时具有较好的网络子结构稳定性。
如图 1 所示,Transformer 结构[25] 具有由多个相同层

堆叠的编码器-解码器结构。 编码器每个层内包含多头

自注意力和前馈神经网络两个子层;解码器额外包含(面

向编码器-解码器的)自注意力机制,并在每个子层后采

用残差连接和层归一化,以提升收敛稳定性。
Transformer 核心的多头自注意力机制允许模型同时

关注序列中的所有其他元素,并计算相关性权重。 相比

LSTM 等只能逐步或有限地关注局部信息的传统序列模

型,多头机制通过并行使用多个独立自注意力模块,从不

同的表示子空间学习信息,更全面地捕捉复杂的长期依

赖关系。 然而,自注意力机制无法感知序列元素的时间

先后关系,无法正确理解序列的物理或逻辑流向。 为此,
Transformer 引入位置编码并与词嵌入相加,注入关于单

词在序列中绝对或相对位置的信息。 此外,为提高模型

的训练效率和稳定性,每个自注意力和前馈网络子层都

集成了残差连接与层归一化:残差连接有助于缓解在深

度网络中出现的梯度消失问题,层归一化则能稳定层间

输入分布,二者共同作为深度模型优化的关键结构,保障

了模型训练的稳定性和效率。
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图 1　 Transformer 结构

Fig. 1　 Transformer
 

architecture

2)大语言模型分类

大语言模型以 Transformer 结构为基本构建模块,依
据对文本理解或文本生成能力的不同倾向,选择性地采

用编码器和解码器。 如图 2 所示,当前主流大语言模型

可分为:自编码模型(单编码器)、自回归模型(单解码

器)和序列到序列模型(编码器-解码器)。

图 2　 大语言模型分类

Fig. 2　 Large
 

language
 

model
 

classification

LLM 发 展 早 期, BERT ( bidirectional
 

encoder
 

representations
 

from
 

transformers) [26] 、ALBERT( adversarial
 

learning
 

of
 

BERT) [42] 等为代表的自编码模型,采用掩码

语言建模和下一句预测方式,能够准确捕捉词语和句子

的深层语义关系,从而在文本分类、情感识别等文本理解

类任务中表现出色。
随着对话问答任务对文本生成能力的需求日愈

强 烈, GPT ( generative
 

pre-trained
 

transformer ) [ 43] 、

LLaMA(large
 

language
 

model
 

meta
 

AI) [44] 等为代表的自

回归模型,通过预测序列中的下一个词进行自回归训

练,并逐步生成连贯自然的文本。 自回归模型是当前

高性能 LLM 的主流架构,具有较低的计算复杂度,被广

泛应用于对话系统、代码生成等生成类任务。 复杂的序

列到序列转换任务,需兼顾文本理解与文本生成能力。
BART( bidirectional

 

and
 

auto-regressive
 

transformers) [45] 、
T5(text-to-text

 

transfer
 

transformer) [46] 等序列到序列模型

结合 Transformer 结构的编码器和解码器部分,将所有任

务统一为“文本到文本”转换问题,实现理解输入序列并

生成相应的输出序列,因此被应用于机器翻译、文本摘要

生产等文本转换类任务。
3)大语言模型构建方法

大语言模型从最初的通用语言理解能力逐步发展为

能够遵循人类指令、安全且有益的通用智能体,需要多阶

段的复杂训练过程。 如图 3 所示,现代 LLM 的通用训练

范式主要包括 4 个核心阶段。
(1)预训练(pre-train),在海量无标注文本数据上自

监督学习,通过预测下一个词或被掩盖的词,习得语言的

语法、语义和丰富的世界知识[26,43] 。 这一阶段是 LLM 通

用能力的基础,产生具备语言理解与生成能力的基础模

型,但输出结果难以与人类偏好完全对齐。
(2)监督微调( supervised

 

fine-tuning),在高质量、人
工标注的“指令-响应对” 数据集上进行有监督学习,使
基础模型更好地理解和遵循人类指令,能够学习到如何

针对特定指令生成期望的有效回复[47] 。
(3)奖励建模(reward

 

modeling),收集人类对模型不

同响应的比较数据,训练独立的奖励模型,以更好地捕捉

人类偏好,提升监督微调输出的质量和安全性,并评估任

意文本响应与人类偏好的一致性[48] 。
(4)对齐与优化( alignment

 

&
 

optimization),将模型

行为与人类价值观和偏好进行更深层次的对齐,主要方

法包括人类反馈强化学习 ( reinforcement
 

learning
 

from
 

human
 

feedback,
 

RLHF ) 和 直 接 偏 好 优 化 ( direct
 

preference
 

optimization,
 

DPO)。 早期广泛采用的 RLHF
引入奖励模型作为强化学习的奖励函数,指导 LLM 通过

近端策略优化等算法,生成能够最大化奖励的预测文

本[49] ,从而使输出更细致地趋近于人类偏好,保证结果

安全且无害;DPO 通过直接优化模型参数来最大化人类

偏好,避免了显式训练奖励模型和复杂的强化学习过

程[50] 。 DPO 通常计算更高效、训练更稳定,在许多场景

下能达到与 RLHF 相似甚至更优的对齐效果,是当前

LLM 对齐的重要手段。
通过分阶段迭代上述阶段,LLM 从一个庞大的语言

预测器,训练成为一个能够理解复杂指令、生成高质量响

应,并与人类价值观高度对齐的人工智能助理。
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图 3　 大语言模型通用训练范式

Fig. 3　 General
 

training
 

paradigm
 

for
 

large
 

language
 

models

　 　 4)通用大语言模型的局限性

尽管参数量日益增加的基础大语言模型在通用任务

中展现出优异的理解和生成能力,但应用于专用领域的

特定任务时,仍面临结果可信问题,即:
(1)通用语料库难以覆盖特定领域的深层专业知识

体系与术语网络,导致通用模型在面对专业领域的复杂

概念时,容易出现知识缺失或理解偏差[51-52] ;
(2)通用模型的训练语料通常较为宽泛,导致其在

专业场景下的推理精度不足,难以捕捉领域特有的细微

差别和隐含意义,从而影响决策的准确性[53] ;
(3)通用大语言模型依赖静态知识,存在难以适应领

域数据与知识的动态更新需求、难以反映领域内快速演进

的最新信息和行业动态[54] ,以及难以适配需要高度事实准

确和可靠的专业领域[55] 等问题。 具体而言,通用 LLM 在

处理如“某型号航空发动机在巡航阶段出现高频振动”这

类具体工程问题时,其局限性尤为突出。 由于训练语料中

缺乏深度的物理知识和精确的故障模式数据,模型容易出

现“幻觉”,即生成看似合理但事实错误的内容,例如将高

频振动归因于不相关的润滑油泵压力异常[55] 。 同时,模型

也难以区分不同设备间的细微差异,可能混淆 CFM56 与

GE90 等发动机的特有故障模式[56] 。 这种高置信度的错误

可能导致错误的诊断和维护决策,进而造成严重的安全事

故和巨大的经济损失,是不可接受的。
为克服上述挑战,并充分发挥大语言模型在特定行

业和应用场景中的潜力,需要构建具备高度事实准确性

的领域专用(domain-specific)大语言模型(也称为垂域模

型)。 领域专用 LLM 是利用特定领域的语料库和知识,
对通用大语言模型进行二次预训练、微调或检索增强等

产生的大语言模型,能够深度理解和掌握特定领域的语

言模式、专业知识和推理能力。 在现阶段涉及专业知识

的对话问答、数据分析等任务中,领域专用 LLM 能够适

应领域知识的动态性,从而展现出更高的准确性、专业性

和可靠性[57-58] 。

2　 PHM 领域大语言模型框架

　 　 尽管大语言模型凭借其卓越的文本理解、生成和推

理能力,为 PHM 领域带来了前所未有的机遇。 然而,通
用 LLM 在面对 PHM 领域特有的复杂多源异构数据和专

业知识时,受限于训练语料中领域知识的匮乏,往往难以

充分发挥其潜力,构建领域专用大语言模型是现阶段

PHM 智能化发展的必然趋势。 本章从领域知识构建和

领域知识注入的角度,介绍 PHM 领域专用 LLM,并建立

知识构架和知识注入的整体构建框架。
2. 1　 领域专用大语言模型构建

　 　 1)领域知识构建

领域知识构建是通用大语言模型向特定领域专用

LLM 演进的先决条件与应用基础,涉及从多源异构数据

中高效地获取、整理、提炼与结构化特定领域内的专业知

识。 领域知识的质量高低直接决定了模型能够学习和理
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解的专业信息的广度和深度,是保证后续知识注入有效

性以及领域专用 LLM 性能的关键。 领域知识构建通常

包括数据采集、知识抽取与表示,以及知识质量管理这

3 个主要环节。
(1)数据采集涵盖了从各种渠道获取海量的非结构

化文本、半结构化表格数据及结构化信息。 构建高质量

的领域语料库是这一阶段的核心任务,为后续的模型训

练和知识注入提供了基础性的数据支撑[59] 。
(2)知识抽取与表示是核心步骤,通过自然语言处

理技术,从非结构化文本中提炼出实体、事件及其相互关

系,并将其转化为结构化的知识表示形式。 这种结构化

表示能够将分散的领域信息组织起来,为大语言模型提

供丰富的语义上下文。 知识的抽取与表示方法论涵盖了

从信息源识别到语义单元抽取的全过程[60] 。
(3)知识质量管理贯穿领域知识构建的始终,包括

对采集数据和抽取知识的清洗、去重、纠错,以及通过人

工审核与标注等方式进行验证,以确保所构建知识的准

确性、一致性和完整性。 高质量的知识管理是确保知识

注入有效性的基础,特别是在结构化知识表示中,数据质

量问题对应用效果具有显著影响[61] 。
2)领域知识注入

领域知识注入[62] 是基于通用 LLM 构建领域专用

LLM 的核心。 如图 4 所示,领域专用 LLM 的构建方法根

据领域知识注入的实现方式,主要可分为内部参数优化

和外部知识增强两大类:内部参数优化直接调整通用模

型的权重,使其具备特定领域能力;外部知识增强则通过

引入模型外部的信息或机制,使通用大语言模型能够查

询检索领域知识。

图 4　 领域专用大语言模型构建方法概述

Fig. 4　 Overview
 

of
 

methods
 

for
 

constructing
 

domain-specific
 

large
 

language
 

models

(1)内部参数优化

二次预训练即领域自适应预训练,在通用大语言模

型基础上,利用大量特定领域的无标注数据,进一步预训

练[63] ;全参微调针对领域内特定任务,使用带标注的领

域专用数据集,对预训练模型的所有参数进行训练[64] 。
二次预训练和全参微调是构建领域专用大语言模型的直

接方法,但均需要高昂的计算成本,且存在数据集较小时

的过拟合问题。
为了降低模型微调的计算量和延迟,参数高效微

调[65] 仅训练模型的部分参数或添加少量新参数,即可使

得通用大语言模型具备领域特定任务所需的语料理解能

力。 近年来,主流的参数高效微调方法包括:
a. 适配器[66] 。 在预训练模型的 Transformer 层中插

入小型全连接网络,训练新增模块的参数,实现参数共享

与模型紧凑化,但也可能增加推理延迟;
b. 提示微调[67] 。 优化嵌入层的输入提示向量,将离

散提示优化问题转为连续提示优化问题,在冻结预训练

模型主体参数的情况下,高效引导模型适应领域特定任

务,但其性能对初始化和任务复杂度敏感;
c. 前缀微调[68] 。 在每一层的隐藏状态前添加可训

练的前缀向量,并利用前馈网络对其进行参数化,为生成

任务提供轻量级适配,同样可能引入推理延迟。
d. 低秩适配器( low-rank

 

adaptation,
 

LoRA) [69] 。 将

权重矩阵分解为两个低秩矩阵的乘积,量化低秩适配器

(quantized
 

LoRA,QLoRA) [70] 通过将预训练模型量化为

4 位,并保持与 16 位微调相当的性能,大幅减少参数和

内存需求,在性能和效率之间取得平衡。
这些方法不仅显著降低了模型微调的计算和存储开

销,还有助于缓解全参数微调时可能出现的灾难性遗忘

问题,并使得模型的迭代和管理更为灵活。
(2)外部知识增强

性能强大的通用基础大语言模型通常为黑盒模型,
使用者难以针对应用领域进行参数微调。 为避免调整模

型的内部参数,外部知识增强技术旨在通过引入外部信

息来提升模型在特定任务上的表现。 外部知识库可以包

含海量的设备维修手册、历史故障案例报告、技术通讯、
甚至是工程师的非结构化工作笔记。

a. 检 索 增 强 生 成 ( retrieval
 

augmented
 

generation,
 

RAG) [71] 结合了参数化和非参数化记忆,是一种针对知

识密集型任务的通用微调方法。 在生成文本时,通过联

合训练可微分的检索器和生成器,能够从外部非参数记

忆中实时获取相关信息,并作为上下文,生成更准确且可

溯源的文本。 有效解决了模型“幻觉”并提供最新知识,
但依赖于外部知识库的质量。

b. 知识图谱[72] 以结构化形式,表示实体、概念和相

互关联的知识库,有效组织和管理领域知识,可有效弥补

通用模型在特定领域知识方面的不足。 PHM 领域的知

识图谱可以定义部件、传感器、故障模式、物理参数等实

体。 知识图谱将信息融入训练数据辅助内部参数监督微

调[73] ,可以作为大语言模型的外部工具,在推理时通过

查询获取事实性信息,动态地增强知识储备和推理能

力[74] ,从而提供结构化高质量的事实性知识,但通常构
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建与维护成本较高。
c. 上下文学习[23] 利用通用 LLM 的模式识别和泛化

能力,在输入提示中提供任务指令和少量输入-输出示

例。 通过将领域特定的外部上下文信息直接作为输入,
引导模型遵循示例中隐含的任务逻辑,无需进行领域特

定微调,即可快速适应新任务[75] ,但对上下文质量和长

度要求较高。
不同外部知识增强方法各有侧重,为黑盒大语言模

型提供了不进行参数微调的性能提升途径。 检索增强生

成擅长提供实时、可溯源的知识;知识图谱则通过提供结

构化的事实性知识来弥补模型在特定领域知识上的不

足;而上下文学习则以其无需微调的便捷性,在快速适应

新任务方面表现突出。
(3)方法对比与选择

内部参数优化与外部知识增强两类方法通过更新模

型参数和动态检索外部知识库的方式实现领域知识的注

入,并在成本、性能和知识时效性等方面各有侧重。
内部参数优化直接将领域知识固化于模型参数中,

推理速度快,一体化程度高。 其中,二次预训练和全参微

调效果最好,但需要海量领域数据和高昂的计算资源(数

百至数千 GPU 月),适用于构建核心基础垂域模型的场

景。 参数高效微调则是资源受限下的首选,LoRA 及其变

体 QLoRA 是当前主流。 QLoRA 相较于 LoRA,通过 4 位

量化可将微调所需的显存降低约 75% ,使得在消费级

GPU 上微调大型模型成为可能,但量化可能带来微小的

精度损失。 适配器和前缀微调虽也能有效降低训练参

数,但可能引入额外的推理延迟。

外部知识增强不改变模型内部参数,灵活性高,尤其

适用于无法访问模型权重的闭源 LLM 或需要频繁更新

知识的场景。 RAG 能够有效缓解模型“幻觉”,并提供可

溯源的答案,其维护成本主要在于向量数据库的构建和

更新,相对较低。 知识图谱能提供高度结构化的事实性

知识,推理逻辑性强,但其构建与维护成本(包括知识抽

取、对齐、更新)远高于 RAG。 上下文学习成本最低,无
需任何训练,适用于快速验证和原型设计,但受限于示例

质量和 LLM 上下文长度。 实践中,常结合使用这些方

法,例如使用 LoRA 对模型进行初步的领域适配,再结合

RAG 技术让其具备访问最新动态知识库的能力,从而平

衡成本与性能[76-77] 。
2. 2　 PHM 领域大语言模型整体框架

　 　 经典 PHM 方法难以处理日益复杂的工业系统的多

源异构数据和非结构化信息,通用大语言模型虽为 PHM
领域带来机遇,但其在专业知识上的匮乏是显著挑战,尤
其是故障诊断、SOH 估计、RUL 预测等具体任务中难以

深入分析预期效果和解决方案。 领域专用 LLM 凭借其

深度融合专业知识和数据的能力,为 PHM 带来了变革,
是克服通用 LLM 局限性、充分发挥其在 PHM 智能化发

展中潜力的必然趋势[78] 。 领域专用大语言模型深度融

入 PHM 各环节的整体框架如图 5 所示,该框架的核心思

想在于,以 LLM 为认知中枢,将原本分散、异构的多模态

数据流,通过统一的语义表征,汇聚到 PHM 核心功能层

进行分析,最终通过人机交互层,将复杂的分析结果转化

为可理解、可执行的智能决策,实现从多模态数据采集,
到信息数据分析,再到决策支持的全流程智能化闭环。

图 5　 PHM 领域大语言模型整体框架

Fig. 5　 Large
 

language
 

models
 

for
 

PHM
 

framework

　 　 1)数据输入层

全面收集设备在设计、制造、测试、运行过程中的多

模态信息,涵盖了物理世界和信息世界丰富的数据类型。

其中,传感器数据(例如振动、温度、压力、电流等时间序

列数据)直接反映了设备的物理状态和动态数据;图像 /
视频数据(例如摄像头、红外热成像、X 射线等获取)用于
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发现表面缺陷、结构损伤等视觉异常[79] ;非结构化文本

数据(例如维修日志、故障报告、操作手册、专家经验等)
提供丰富领域知识的信息源[19] ;结构化数据(例如设备

参数、故障记录、维护计划等)则为分析提供基础信息。
2)数据处理与特征提取层

对原始数据进行清洗、转换等操作,并从中提取出高

价值特征。 包含不同模态数据的专业处理模块,如传感

器、图像、结构化数据处理模块负责各自模态的降噪、特
征工程和模式识别。 其中,文本处理模块是 LLM 发挥关

键作用之处,通过自然语言理解、命名体识别、关系抽取

等技术,从海量文本数据中自动抽取、组织和构建知识图

谱,将原本的非结构化数据转化为机器可理解和利用的

形式[80] 。 随后会通过多模态融合技术将其整合[81] ,如在

输入层直接拼接特征的早期融合、在决策层整合结果的

晚期融合、通过交叉注意力机制在中间层面对特征进行

动态加权以实现深度交互的混合融合[82] 。
最终,融合后的特征会形成一个统一的表征向量,该

向量再通过一个线性投影层[83] 进行维度映射和空间对

齐,从而转换为与词元表兼容的伪词元序列[82-83] ,以适配

Transformer 模型的统一输入结构,为后续核心功能层的

分析预测提供高质量、一体化的数据基础[84] 。
3)PHM 核心功能层

基于统一的表征进行分析和预测,包含故障诊断、
SOH 估计、RUL 预测、异常检测等 PHM 领域内核心任务

的功能,领域专用 LLM 融合历史运行数据、状态监测指

标、环境因素等多模态数据,全面评估设备的整体健康状

况,生成详细的健康报告,并进行趋势分析和风险评估。
解释与建议模块确保 LLM 不仅给出分析结果,还能用自

然语言解释原因,并提供初步的维护和建议,以增强系统

的可解释性[85]

4)决策支持与交互层

将复杂分析结果转化为可操作的智能决策。 此层引

入了知识库与 PHM 领域专用 LLM,存储 PHM 领域的专

业知识、历史故障案例、维修规程等,并由 LLM 持续学习

和更新,提供强大的推理能力。 PHM 系统的领域专用

LLM 问答系统是与用户交互的核心:LLM 通过理解用户

自然语言提问的查询意图,获取 RUL 预测、故障诊断、维
护方案、故障分析等信息,提供多层次、多角度的精准回

答[86] 。 用户交互界面直观展示 PHM 分析结果、健康趋势、
维护计划等。 最终,维护决策支持模块基于 LLM 分析结

果,智能推荐最佳维护时机,生成详细的维护工单,并持预

测性维护、预防性维护等维护策略的制定与实施[87] 。
综上,基于领域专用 LLM 的 PHM 框架在数据处理

和问答决策方面,能够展现出多角度的特点和能力:
1)通过强大的多模态理解与融合,深度理解并处理

PHM 全流程中产生的多源异构数据;

2)具备智能知识抽取与推理能力,能够从海量非结

构化文本中构建 PHM 领域知识图谱;
3)具备上下文感知和理解,能够提供高度定制化的

诊断和预测结果,且通过提供诊断或预测结果的依据,增
强决策建议的解释性与透明度;

4)通过人机协同与知识增益,辅助 PHM 工程师提高

工作效率,通过交互反馈持续学习优化模型能力。

3　 层次化 PHM 任务领域专用大语言模型

　 　 PHM 领域任务涵盖从不同层次对设备及系统进行

监测和分析。 领域专用 LLM 能够赋能 PHM 系统,有效

应对不同层次化任务的挑战,例如,部件级任务中,侧重

于传感器数据处理与特征识别,建模复杂度相对较低,主
要通过学习多模态数据来替代复杂的物理建模;子系统

级任务中,侧重于部件间耦合效应的理解和多模态数据

融合分析,建模复杂度提升,需处理更复杂的逻辑关联;
复杂系统级任务中,聚焦于宏观决策支持与系统风险评

估,通过深度整合各层次信息并进行高级推理,从局部洞

察转向全局优化。
本章将从部件、子系统、复杂系统 3 个层次介绍 PHM

领域专用大语言模型的应用,并对已有的研究进行分析讨

论,各层次任务及领域专用大语言模型举例如图 6 所示。

图 6　 PHM 领域大语言模型概述

Fig. 6　 Overview
 

of
 

PHM
 

domain-specific
 

LLM

3. 1　 部件级 PHM
　 　 现代工业体系中,各类设备或系统均由不同部件协

同工作,任何单一部件的潜在故障都有可能导致整个设

备或系统的性能下降甚至停机,从而造成巨大的经济损

失和安全风险。 部件级 PHM 是设备健康管理的基础层

次,用于对单一、独立的机械部件( 如轴承、齿轮、阀门

等)进行状态监测、故障诊断等任务。 在这一层级,LLM
的引入显著降低了对复杂物理模型的依赖,展现出低建

模复杂度的优势。
LLM 能够通过学习海量的多模态数据,包括传感器时

间序列、图像、以及非结构化的维修日志和操作手册,自动

捕捉部件的健康特征和故障模式,无需显式构建复杂的物

理方程[19] 。 例如,LLM 可以从维修人员对异响、异味、轻



10　　　 仪　 器　 仪　 表　 学　 报 第 4 6 卷

微振动等现象的语言描述中,结合历史数据,直接识别并

预测部件的早期故障,极大地简化了从原始数据到诊断结

果的路径[80] 。 例如,Mamba[88] 等线性模型的应用,能进一

步提升处理速度并降低计算复杂度,使其在处理长序列数

据时更具优势,使得部件级 PHM 能够更快部署和迭代。
1)部件故障诊断

面对跨条件、小样本和跨数据集等适应性挑战,
Tao 等[89] 提出了一种基于 LLM 的轴承故障诊断框架,如
图 7 所示,将振动数据的时域和频域特征编码为文本特

征向量,使用 QLoRA 方法对 ChatGLM2-6B[90] 模型进行参

数高效微调,以增强其对轴承振动信号特征的理解和分

析能力。 在 CWRU 等 4 个公开数据集上,分别进行的单

数据集、单数据集跨条件、全数据跨数据集,以及有限数

据跨数据集等各类适应性实验表明,该框架能有效提升

模型的泛化能力,跨数据集学习后的诊断准确率有明显

提升,具有复杂工程场景的适用性。

图 7　 基于 LLM 的轴承故障诊断框架

Fig. 7　 LLM-based
 

framework
 

for
 

bearing
 

fault
 

diagnosis

此外,Pang 等[91] 提出了 LLaMA-HFT 故障诊断框架,
基于 LLaMA2[92] 使用混合微调策略,即仅冻结底层模块

的部分参数,对其他顶层模块使用 LoRA 参数高效微调。
在帕德博恩大学(Paderborn

 

University,PU)数据集[93] 上,
LLaMA-HFT 准确率和 F1 分数均优于小规模 Transformer
模型。

Peng 等[94] 提出了一种名为 BearLLM 的轴承健康管

理框架。 首先,基于 CWRU 等公开数据集构建了一个多

模态轴承健康管理的数据集,结合了机械振动信号和健

康管理语料库;然后,使用该数据集训练故障分类网络,
以统一振动信号表示为输入,通过监督学习提取振动信

号特征并转换为词嵌入,作为 LLM 的输入。 最后,采用

LoRA 参数高效微调策略对 Qwen2-1. 5B[95] 模型进行微

调,以适应轴承健康管理任务。 实验表明,BearLLM 在

9 个公共故障诊断数据集上,超越了专门针对单数据集

设计的方法,展现出了优秀的泛化能力。

面对机械装备故障诊断中对高精度和智能化方法的

需求,Lin 等[96] 提出了一种基于多模态大语言模型的故

障诊断框架 FD-LLM,通对 Vicuna-7B[97] 模型进行模型对

齐训练、模糊语义嵌入、可学习的提示嵌入,以及 LoRA
参数高效微调,使模型能够理解和处理时间序列数据。
在 CWRU 数据集的轴承故障诊断实验中,FD-LLM 在准

确率、精确率、和 F1 分数指标上均高于 98% ,均高于使用

CNN[98] 、小规模 Transformer 等方法。
2)部件 SOH 估计

Yunusoglu 等[99] 提出了一种基于 LLM 框架的电池

SOH 估计方法,对预训练 BERT 模型输入层进行了定制,
将电池循环数据和瞬间放电数据转化为 LLM 可理解的

嵌入向量表示。 同时,利用多头自注意力机制捕捉长期

依赖关系,以及前馈神经网络提取复杂模式、位置编码保

留序列信息;并且在架构顶部添加回归头,以输出 SOH
估计值。 在包含 8 个电池单元不同循环条件老化数据的

实验数据集中,该方法相比 SVM、CNN 等经典方法具有

更低的平均绝对误差(mean
 

absolute
 

error,MAE)。
Feng 等[100] 提出电池 SOH 估计框架 GPT4Battery,结

合了 GPT-2 模型和测试时间训练[101] 技术。 在预训练阶

段,利用从实验数据集中提取的电池电压-容量曲线特征

对模型进行训练,通过物理引导的自监督学习和掩码重

构损失函数,使模型能够利用电池的基本物理原理进行

学习,优化了模型对这些特征的提取和理解能力。 测试

时间训练阶段,采用前缀提示适应策略[67-68] ,在输入数据

前附加少量可学习的提示信息,微调模型参数,从而在降

低计算成本的同时,提高了模型的适应性和泛化能力。
在马里兰大学 CALCE 等多个锂离子电池数据集实验中,
表现出了超过 LSTM、小规模 Transformer 等方法的均方

误差(root
 

mean
 

square
 

error,RMSE)、MAE 评价指标,并
展现出优秀的跨数据集泛化能力。

Sun 等[102] 提出了基于预训练时间序列基础模型的

TimeGPT[103] 电池 SOH 估计框架,利用 143 个具有 6 种不

同正极材料的锂离子电池的循环数据,使其能够捕获电

池特有的健康退化模式的非线性和复杂性,从而实现高

精度的 SOH 估计。 在多个锂离子电池数据集上的实验

结果表明,该方法在 RMSE、 MAE 等评估标准上优于

LSTM、小规模 Transformer 等方法,为锂离子电池 SOH 估

计提供了一种高效且高精度的新范式。
3. 2　 子系统级 PHM
　 　 子系统级 PHM 关注由多个相互作用的部件构成的

功能单元的健康管理,例如液压系统、传动系统或冷却系

统等。 与部件级 PHM 的独立性不同,子系统级 PHM 需

处理部件间的复杂耦合效应和故障传播路径。 领域专用

LLM 在此层级的主要优势在于能够实现更准确的多模态

融合数据分析。
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子系统的数据来源除传感器外,还有系统级的性能

参数、控制指令以及反映部件间相互影响的文本记录。
LLM 能够深度整合这些异构数据,通过对文本描述中因

果关系、功能依赖的理解,构建子系统级的逻辑关联[84] 。
例如,在识别子系统异常时,LLM 能够综合分析来自不同

部件的多传感器数据[104] 、系统运行参数以及相关操作日

志与历史维护记录中的非结构化文本信息,从而更精确

地诊断问题来源并识别潜在的故障传播链。 这种融合分

析能力提升了子系统故障诊断的准确性,并为优化维护

策略提供了更全面的视角。
1)子系统 RUL 预测

Wang 等[105] 在 RUL 预测任务中,较早地探索了 GPT
模型应用,提出了基于微调 GPT-2[106] 预训练模型的方

法,如图 8 所示。 首先,该方法首先对输入时间序列进行

分块处理,将连续数据转化为固定长度的子序列,以适配

GPT-2 的输入格式并降低数据复杂度;然后,数据嵌入层

利用位置编码和值嵌入,将时间序列转换为 GPT-2 可理

解的向量表示,输出层则将模型的输出维度转换为预测

剩余寿命所需的单维度数值;最后,在微调阶段,GPT-2
模型中的大部分参数(包括自注意力和前馈神经网络层,
以及残差和归一化层)被冻结,仅更新重构的数据嵌入层

和输出层的参数。

图 8　 GPT 微调模型用于 RUL 预测的框架

Fig. 8　 Fine-tuned
 

GPT
 

for
 

RUL
 

prediction
 

framework

在来源于真实飞行数据且更加复杂的新数据

集 N-CMAPSS[107] 上的实验表明,该方法在多个子数据集

上的 RMSE 结果优于领域适配 Transformer[108] 和深度高

斯过程[109] 两种对照方法。
此外,Chen 等[110] 提出了一种利用 GPT-2 模型 RUL

预测的框架:通过滑动窗口和线性嵌入层,将多维时间序

列信号转换为 GPT-2 模型可理解的输入序列。 在微调阶

段,该框架使用 LoRA 高效微调方法,冻结了 GPT-2 模型

的前 20 层,只对最后 4 层进行微调,从而在保留模型通

用性能的同时实现了领域适配,并显著降低了计算资源

消耗。 微调后的 GPT-2 模型输出的隐藏状态通过一个线

性回归头预测最终的 RUL。 在 CMAPSS 数据集 FD002
和 FD004 两个相对复杂的子集实验中,该框架在 RMSE
和评分函数上的结果均优于多种基于 CNN、LSTM 等传

统深度神经网络的方法。
为解决 RUL 预测中高维、噪声传感器数据带来的挑

战,Chen 等[111] 进一步提出了因果推理数据剪枝框架,通
过因果推理识别与 RUL 具有稳健因果关系的传感器信

号进行数据剪枝,并结合参数高效微调策略。 在 N-
CMAPSS 数据集上仅使用 10% 的数据进行微调,即可实

现比现有方法低 26% 的 RMSE,并显著减少 90% 的训练

时间,展示了高效且高精度的工业 RUL 预测潜力。
2)子系统故障诊断

工业智能化进程中,对系统整体进行状态监测是

PHM 领域的重要需求,以确保复杂生产或运行过程的连

续性和高效性。 与零件故障诊断不同,基于深度学习的

系统故障诊断方法,通常需要针对特定模型进行训练,且
不同故障特征存在重叠,易发生误诊,亟需鲁棒性更强的

诊断策略[96] 。
在 3. 1 节第 1 部分中提及的 FD-LLM,凭借其多模态

理解与逻辑推理能力,不仅适用于轴承等部件故障诊断

任务,还可用于子系统级 PHM 任务。 在来自于波音公司

CFM56-7B26、GE90-115B 等不同型号航空发动机的真实

数据集[112] 的实验中,准确率、精确率和 F1 分数上均超过

90% ,显著高于使用 CNN、基础 Transformer 等方法。 同

时,该方法具备问答功能,通过提示学习和交互式推理,
在用户输入工程数据后,系统能够生成诊断结果并提供

维护建议,实现了人机交互式的故障诊断。
在供暖、 通风和空调 ( heating,

 

ventilation,
 

and
 

air
 

conditioning,
 

HVAC)系统故障诊断任务中,Zhang 等[113]

提出了一种通过标签数据监督微调 LLM 的方法,通过设

计 LLM 自纠正策略,自动基于标签数据生成微调数据

集,并采用数据增强方法自适应更新微调数据集。 实验

表明,微调的 GPT-3. 5 模型故障诊断准确率显著提高,与
GPT-4 模型相比平均诊断准确率高出 31. 1% ,且具备较

强的泛化能力。
3. 3　 复杂系统级 PHM
　 　 复杂系统级 PHM 是最高层次的健康管理,涵盖了由

多个子系统组成的大型、异构工业系统,如智能工厂、航
空航天器或发电站。 这一层面决策涉及多目标优化、资
源调配和业务影响评估。 LLM 在此层级的核心贡献在于

提供完备、可靠的问答决策建议,从而实现对整个系统性

能、安全和运营效率的宏观管理[114] 。
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面对海量的跨子系统数据和复杂的运营目标,LLM
能够将所有层次的健康信息与系统级的运行计划、环境

因素、甚至供应链数据进行融合[115] 。 其强大的推理能力

使得 LLM 能够识别系统层面的瓶颈、预测系统级故障对

生产任务的影响、评估整体运营风险,并基于这些洞察,
以自然语言的形式提供完备的决策支持,例如,推荐最优

的生产调度、备件库存策略或跨部门协同维护方案。 这

些建议不仅考虑了技术可行性,还能权衡经济效益和安

全风险,从而实现全局最优。
1)复杂系统故障诊断

Zheng 等[116] 提出的用于复杂系统故障诊断的微调

预训练 LLM 框架,通过数据集到自然语言提示的转换和

监督式微调,对开源模型 LLaMa-2 和闭源模型 GPT-3. 5-
Turbo 进行 LoRA 参数高效微调。 在高速列车制动系统

真实数据集和田纳西-伊斯曼化工过程仿真数据集的实

验表明,该方法在 F1 分数等标准下接近甚至超越 SVM、
CNN 等基准方法,具有一定的应用前景。

在风力涡轮机故障诊断任务中,Men 等[117] 提出了一

种名为故障诊断事件思考知识图谱的框架,包含知识建

模和知识推理。 知识建模包含故障诊断事件知识图谱、
抽象事件本体和物理世界的数字孪生,共同构成虚拟故

障诊断数字孪生环境;知识推理以 GPT-3. 5 为核心,在
VFD-DTEnv 中执行感知-思考-行动循环,实现对故障原

因的推理和维护决策支持,从而有效提升了风力涡轮机

故障诊断的准确性和可解释性。
在航空装配故障诊断任务中,Liu 等[118] 提出了一种

将知识图谱嵌入到 LLM 的联合知识增强框架,通过知识

图谱中的图结构大数据对 ChatGLM-6B[90] 模型进行前缀

微调,并在推理阶段集成了子图生成-检索模块,增强模

型专业知识的同时降低了计算量。 在真实场景的数据集

实验中,达到了 98. 5%的故障诊断准确率,显著高于未微

调 LLM 的 41. 5% 。
2)复杂系统异常检测

Russell-Gilbert 等[119] 基于 Llama
 

3-8B[120] ,提出了一

种名为 AAD-LLM 的异常检测框架。 通过统计过程控制

技术对时间序列数据进行预处理,以确定正常行为的基

线,并将时间序列数据分割成较小的窗口。 再通过提示

工程和文本模板将统计信息和领域知识整合到输入提示

中,从而引导 LLM 进行推理。 在塑料制造厂案例中,
AAD-LLM 取得了 70. 7% 的准确率和 77. 0% 的 F1 分数。
在 SKAB 异常检测基准数据集的实验中,AAD-LLM 的

F1 分数接近甚至超过了部分基于 LSTM 等方法,展现出

了动态工业环境中异常检测的潜力。
此外, Russell-Gilbert[121] 基于 Llama

 

3. 1-8B[120] , 在

AAD-LLM 的基础上提出了 RAAD-LLM 异常检测框架,
通过动态检索外部知识库中的相关信息,增强了模型对

时间序列数据中异常的识别能力,以及在数据稀疏的工

业环境中的异常检测能力。 相比于 AAD-LLM,RAAD-
LLM 在塑料制造案例中的准确率提升至 88. 6% ,F1 分数

达到 91. 9% 。 在 SKAB 数据集上,RAAD-LLM 的 F1 分数

高于基于 LSTM 等对比方法,在动态工业环境中可作为

更加准确且实用的异常检测方法。 综上,PHM 领域大语

言模型代表性研究对比如表 1 所示。
当前研究呈现出的特点为:
(1)方法路径清晰:研究从文本化传感器数据[89] 向

真正的多模态融合[96] 演进,模型能力不断增强;
(2)偏重诊断与评估:大部分工作集中在故障诊断

和 SOH / RUL 评估,而更前端的异常检测和更后端的维

护决策优化与 LLM 的结合尚属蓝海;
(3)首选参数高效微调:LoRA 及其变体因低成本和

高效性,是目前领域专用 LLM 构建的主流方法;
(4)初现端到端问答能力:部分研究[96] 已展现出从

数据输入到自然语言问答的端到端能力,预示着未来

PHM 系统将更具交互性和易用性。
综观 PHM 领域大语言模型的现有应用,其代表性研

究目前仍受限于高质量、多模态标注数据的稀缺性,直接

影响了模型的学习效果;模型对齐与泛化能力提升的复

杂性,使得 LLM 难以在多样化的工业场景中实现普适性

应用;以及对领域先验知识和专家经验的依赖性,限制了

其自主学习和适应能力。 同时,在复杂异构数据的深度

融合与交互式推理方面,LLM 仍存在解释性与鲁棒性瓶

颈,亟需提升跨任务、跨场景的可信赖、可泛化的解释能

力。 此外,硬件部署的处理实时性与计算效率也是亟待

解决的关键问题,特别是在资源受限的边缘设备上,如何

实现低延迟、高吞吐量的推理,是在工业 PHM 应用中面

临的重大挑战。

4　 趋势与挑战

　 　 随着大语言模型技术的不断发展,基于模型的 PHM
方法正在人工智能时代迎来前所未有的变革。 大语言模

型以及领域专用大语言模型,凭借其强大的特征学习能

力、知识融合和推理能力,为 PHM 领域的各种任务带来新

的解决方案。 但将 PHM 领域专用大语言模型在实际应用

中有效地落地,仍然面临诸多挑战。 本章将从大模型轻量

化、边缘端侧部署、广义复杂系统的角度展望 PHM 领域专

用大语言模型的发展机遇,并分析其在实时性需求与计算

资源限制、数据质量与成本、多物理场景仿真与可扩展性

方面的挑战。 本章将从大模型轻量化、边缘端侧部署、广
义复杂系统的角度展望 PHM 领域专用大语言模型的发展

机遇,并分析其在实时性需求与计算资源限制、数据质量

与成本、多物理场景仿真与可扩展性方面的挑战。
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表 1　 PHM 领域大语言模型代表性研究对比

Table
 

1　 Comparison
 

of
 

PHM
 

domain-specific
 

LLMs
 

representative
 

research

层次 任务 代表研究 LLM 骨架 关键创新 数据集 主要方法与效果

部件

级

子系

统级

复杂

系统

级

故障

诊断

SOH
估计

RUL
预测

故障

诊断

故障

诊断

异常

检测

[89] ChatGLM2-6B
振动信号文本化、
QLoRA 微调

CWRU 等数据集跨

数据集和条件应用

提出振动信号文本化和 QLoRA 微调,跨数据集学习

后诊断准确率明显提升

[91] LLaMA2
基于 LoRA 的混合

高效微调
PU 数据集

采用基于 LoRA 的混合微调策略,准确率和 F1 分数

均优于小规模 Transformer 模型

[94] Qwen2-1. 5B
多模 态 数 据 集 构

建、LoRA 微调

CWRU 等数据集构

成的多模态数据集

通过构建多模态数据集和 LoRA 微调,在 9 个公共

数据集上展现优秀泛化能力

[96] Vicuna-7B
多模态对齐、 时序

数据处理
CWRU 数据集

采用多模态对齐和 LoRA 微调,准确率、精确率、F1
分数均高于 98%

[99] BERT
定制输入层、 回归

预测

8 个电池单元循环

老化数据集

通过定制输入层和回归预测头,平均绝对误差低于

SVM、CNN 等经典方法

[100] GPT-2
物理引导自监督学

习、测试时间训练
CALCE 等数据集

提出物理引导自监督学习和测试时间训练,采用前

缀提示适应策略微调,RMSE、MAE 优于对比方法,
展现出优秀的跨数据集泛化能力

[102] TimeGPT
预训练时序模型捕

获退化模式

143 个锂离子电池循

环数据集

利用预训练时序模型捕获健康退化模式,MAE、
RMSE 优于 LSTM、小规模 Transformer 模型

[105] GPT-2
冻结主干网络、 层

微调
N-CMAPSS 数据集

通过时间序列分块并冻结主干网络微调输入输出

层,RMSE 结果优于对照方法

[110] GPT-2
滑动窗口、LoRA 高

效微调
C-MAPSS 数据集

采用滑动窗口和 LoRA 高效微调,RMSE 和评分函数

优于多种传统深度神经网络

[111] GPT-2 因果推理数据剪枝 C-MAPSS 数据集
提出因果推理数据剪枝框架,仅用 10% 数据微调,
实现 26%更低 RMSE,训练时间减少 90%

[96] Vicuna-7B
多模态理解、 问答

推理

波音飞机发动机真

实数据集

基于多模态理解和问答推理能力,实现人机交互式

诊断,指标均超过 90%

[113] GPT-3. 5
监督微调、自纠正

策略
HVAC 数据集

提出通过标签数据监督微调 LLM,诊断准确率比

GPT-4 平均高 31. 1%

[116] LLaMA-2
数据集到自然语言

提示的转换

列车制动系统、化工

过程数据集

采用数据集到自然语言提示转换和 LoRA 微调,
F1 分数接近甚至超越 SVM、CNN 等基准方法

[117] GPT-3. 5
知识建模、循环推

理

风力涡轮机故障数

据集

提出基于知识图谱的故障诊断框架,通过 GPT-3. 5
循环推理,提升诊断准确性和可解释性

[118] ChatGLM-6B
知识图谱嵌入、 前

缀微调
航空装配数据集

通过知识图谱嵌入和前缀微调, 诊断准确率达

98. 5% ,显著高于未微调 LLM

[119] Llama
 

3-8B
时间 序 列 数 据 分

割、提示工程

塑料制造厂数据集、
SKAB 数据集

基于统计控制和提示工程,在塑料制造厂案例中准

确率 70. 7% ,F1 分数 77. 0% ,SKAB 数据集 F1 分数

接近或超过部分 LSTM 方法

[121] Llama
 

3. 1-8B 检索增强生成
塑料制造厂数据集、
SKAB 数据集

采用检索增强生成技术,在塑料制造厂案例中准确

率提升至 88. 6% ,F1 分数达 91. 9% ,SKAB 数据集

F1 分数高于对比方法
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4. 1　 发展趋势

　 　 1)大模型轻量化

PHM 领域专用大语言模型在训练时依赖海量计算

资源,云端推理也需高性能 GPU。 然而,面对飞机跨洋飞

行时发动机传感器异常等场景,通过不稳定的卫星通信

链路进行云端处理会导致显著延迟,怠误故障响应最佳

时机[122] 。 同时,军工、关键基础设施等领域对数据隐私

要求极高,频繁与云端数据交互难以满足数据隐私和安

全需求[123] 。 因此,模型剪枝、量化、知识蒸馏等轻量化技

术正日益普及,以使大语言模型能在保持输出结果质量

时,大幅削减参数规模和任务计算负载,从而为资源受限

边缘端设备的高效本地数据采集、本地数据处理奠定

基础。
2)边缘端侧部署

随着网络轻量化技术的进步,以及模型呈指数增长

的能力密度[124] ,使得将 PHM 领域专用 LLM 部署到工业

设备的边缘端正成为可能。 边缘部署侧重于硬件层面的

考量,包括优化成本、能效、实际算力以及硬件利用率。
通过将经过轻量化处理的模型直接部署在靠近数据源的

边缘设备上,可以有效降低对昂贵云端算力的依赖,减少

数据传输延迟,实现更快的故障响应。
此外,本地化处理更好地满足了数据安全需求。 这

将进一步推动 PHM 技术在更多行业和场景中的应用,提
升设备的可靠性和运行效率,显著降低运维成本。

3)广义复杂系统

当前 PHM 系统通常针对特定设备类型或行业定制

开发,存在知识孤岛和复用性差的问题。 大语言模型凭

借其强大的通用语言理解、跨模态知识融合和泛化能力,
为构建广义复杂系统提供了潜在途径[125] 。 故可引入世

界基础模型( world
 

foundation
 

model) [126] ,通过人工智能

构建交互系统的内部模拟环境,使其能够预测未来状态

并理解复杂系统内部的因果关系。 实现广义复杂系统建

模的关键挑战,在于克服高精度多物理场仿真时的数据

质量参差不齐与计算资源受限问题。
世界基础模型增强的领域专用大语言模型可从海量

异构数据中自主学习并构建普适的 PHM 领域知识,使得

跨设备知识迁移和少样本学习成为可能。 无需针对每一

种新型设备或特定故障模式从零开始构建模型,通过少

量数据和简单的指令,即可实现模型的快速适配和性能

优化。 这将极大降低 PHM 系统的开发和部署门槛,加速

PHM 技术在不同工业场景中的普及和应用,最终实现知

识的普惠化和经验的通用化[127] 。

4. 2　 技术挑战

　 　 1)实时性需求与计算资源限制

工业 PHM 应用中,实时故障预警和紧急维护决策对

系统的响应速度有着极高的要求。 这意味着系统必须能

够迅速完成数据的处理、分析和决策。 然而,当前主流的

预训练大语言模型由于其庞大的参数量和复杂的推理计

算,在计算能力受限的边缘设备上部署和维护成本高昂。
例如,GPT-3 模型拥有 1

 

750 亿参数[23] ,即使是经过优化

的小型 LLM,其推理延迟在边缘设备上也难以满足工业

PHM 极高的实时性需求[128] 。 这种高推理延迟直接阻碍

了 LLM 在工业 PHM 应用场景中进行实时故障预警和紧

急维护决策。
同时,随着模型剪枝、量化等轻量化技术快速发展,

在保证 PHM 高精度和鲁棒性的前提下,如何利用有限的

计算资源实现 LLM 的低延迟、高吞吐量推理,仍然是严

峻的技术挑战。 此外,即使经过量化等优化,LLM 的持续

推理仍然可能迅速耗尽电池,难以适应功耗敏感的工业

场景[129] 。 考虑到绿色制造和可持续发展的社会背景,
LLM 的训练和部署所伴随的巨大能源消耗也值得关注,
对其能效比的优化将显得尤为重要[130] 。

2)数据质量与成本

尽管大语言模型展现出从非结构化数据中抽取知识

的强大能力,但工业 PHM 领域的数据依然面临着严峻的

质量与成本挑战。 首先,高质量的设备故障数据,特别是

导致设备失效的早期退化数据,因设备制造商和运营商

致力于避免故障发生,往往稀缺且获取难度大[131] 。 其

次,特定故障模式(尤其是罕见故障或长尾事件)的数据

样本极不均衡,LLM 在学习这些非典型现象时可能面临

困难,影响其诊断和预测的准确性[22] 。
其次,工业数据普遍存在多源异构、格式不统一、噪

声多、缺失值普遍等问题,需要大量人力进行清洗、标注

和预处理,带来了高昂的时间和经济成本[132] 。 如何有效

利用少量带标签数据和大量无标签数据进行半监督或自

监督学习,并降低数据获取和标注成本,是 LLM 在 PHM
领域发展的重要制约。

3)多物理场景仿真与可扩展性

工业设备通常涉及力学、热学、电学等多个物理场的

复杂耦合,其仿真对数据质量和计算资源都有极高要求。
然而,实际工业数据往往质量参差不齐,且获取受限。 如

何在有限的计算资源下,利用世界基础模型有效整合不

同物理场的知识,并克服数据质量问题,实现对复杂系统

行为的准确预测和因果关系的理解,是当前 PHM 领域亟

待攻克的关键方法层面挑战[133] 。
此外,确保仿真方法在面对海量异构工业系统时的

可扩展性也至关重要。 这要求模型不仅能够适应来自不

同类型、不同规模设备的复杂数据流,还需要有效地进行

知识迁移,从而在多样化的工业环境中实现真正意义上

的普适性应用。 现有 AI 模型在跨领域、跨设备部署时常

面临数据分布差异和领域适应的难题,如何在不牺牲性
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能的前提下,实现模型在广泛工业场景中的可靠推广,是
当前 PHM 领域 LLM 的重要挑战[134] 。

5　 结　 　 论

　 　 在大语言模型时代背景下,传统 PHM 方法在处理多

模态数据、融合领域知识以及提升泛化能力等方面仍有

挑战,而通用大语言模型又难以直接适配领域专业知识

深度和预测精度的特定需求。 为全面综述 PHM 领域专

用大语言模型的研究现状,从 PHM 常见任务和指标、
Transformer 结构和通用大语言模型出发,深入阐述领域

专用大语言模型构建的领域知识注入方法、PHM 领域专

用大语言模型的整体框架,并从部件级、子系统级、复杂

系统级这 3 个层次针对故障诊断、健康状态估计、剩余使

用寿命预测、异常检测等任务,分析了各类专用大语言模

型的设计架构、构建策略及其在实际应用中展现的效果

与潜力。
  

PHM 领域专用大语言模型的发展潜力巨大,在大模

型轻量化、边缘端侧部署、广义复杂系统等多个方向具备

发展机遇,但同时也面临实时性需求与计算资源限制、数
据质量与成本、多物理场景仿真与可扩展性的挑战。 随

着硬件 AI 计算能力的不断增强和大语言模型性能的持

续优化,PHM 领域专用大语言模型将朝着功能更全面、
响应更迅速、应用更广泛的先进方向稳步进化。 展望未

来,PHM 领域大语言模型的发展,不仅是预测精度的提

升,也是人机协作范式的革命:能够与工程师深度对话、
共同诊断、协同决策的数字专家伙伴,从而深刻变革维护

和管理复杂工业系统的方式。
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