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Measurement method for volume error of large machine tools based on beam
drift compensation and model optimization
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(1. College of Mechanical and Vehicle Engineering, Changsha University of Science & Technology, Changsha 410076, China;

2. School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China)

Abstract: Large CNC machine tools are characterized by long guide rail travel and are often subjected to complex environmental
disturbances in industrial settings. Existing volumetric error detection methods generally suffer from limited accuracy and low efficiency.
To address the above shortcomings, a measurement method for volume error of large machine tools based on beam drift compensation and
model optimization is proposed. To mitigate accuracy degradation caused by beam drift in long-distance measurements, a differential
compensation method for angular drift is proposed based on the difference in beam polarization states, which is the common
transmission of reference light and measurement light and beam splitting detection. At the same time, the effect of the non-parallelism
of the two beams on the roll angle measurement was analyzed, and a high-parallelism two-beam generation module was constructed by
utilizing the characteristics of retroreflector. On this basis, a five-degree-of-freedom (5-DOF) error online measurement system was
developed, which achieved high-precision and high-efficiency acquisition of the geometric error of the machine-sheet axis. In order to
further improve the accuracy and applicability of the volume error model of large machine tools, an optimized volume error model
suitable for various three-axis machine tools is constructed. Starting from the homogeneous transformation model, the influence
mechanism of Abbe error and Bryan error caused by the non-collinearity between the error measurement axis and the motion axis is
introduced into the model. Performance tests of the measurement system and compensation experiments for machine tool volume error

measurements were carried out in the laboratory and industrial sites respectively. The results show that within the 3 m measurement
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range, the standard deviation of the angular error of the 5-DOF measurement system is below 0. 5", and the standard deviation of the

straightness error is less than 0. 6 wm. After error measurement and compensation, the diagonal positioning error of the machine tool is

reduced by 51. 6% . This method can achieve precise online measurement and active compensation of volume errors of large machine

tools, and has good industrial application prospects.

Keywords : large machine tools; volumetric error; laser multi-degree-of-freedom; model optimization; beam drift
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Fig. 1 Volumetric error measurement of machine tools based on

beam drift compensation and model optimization
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Fig.2 Diagram of optical path for 5-DOF measurement system
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