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Prediction of profiling float water-outlet location based
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Abstract:To address the limitations of existing ocean models for underwater unmanned system research, such as single parameter, non-
dynamic, cannot realistically simulate the marine environment of arbitaryre sea area, a multi-parameter marine database based on ocean
big data are established. Leveraging the efficient retrieval capability of the database, marine data blocks are rapidly acquired, and
conversion of kinematic positions to geographic coordinates was performed. A smooth interpolation algorithm of temporal and spatial ocean
data based on slippage was proposed to build a RTPDCOM, which avoids the issue of data overshooting at great depth; On this basis, a
profiling float dynamics model was further established, and prediction of the water outlet location was carried out. Comparisons between
simulated and sea trial data in the western Pacific region reveal that, under 4 000 m profile motion conditions, the horizontal distance
between the modeled and measured water inlet and outlet points remainu largely consistent, the angular deviation of water outlet points is
mostly within 20°, and the distance deviation is mostly within 650 m. Moreover, the temperature and salinity profile data exhibit high
concordance, with an average temperature deviation of 0. 126°C ~0. 185°C and an average salinity deviation of 0. 027 6~0. 031 4 PSU,
validating the RTPDCOM model’s consistency with the real-world marine environment. Comparisons between simulated and sea trial data
in the Indian Ocean region demonstrated that the angular deviation is mostly within 20°, and the distance deviation is mostly within
600 m, indicating excellent prediction performance and highlighting the RTPDCOM model’s universality across different sea areas.

Additionally, compared to traditional layered models, the RTPDCOM yields smaller deviations in water outlet angle and distance. lts
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strong portability holds significant application value for ensuring the reliability and stability of unmanned undersea systems, and

improving the precision of trajectory planning and formation control.

Keywords : profiling float; marine big data; digital twin model; water-outlet location prediction; sea trial validation
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Fig. 1 Multi-parameter marine environment database
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Fig.3 Target dataset of marine environment
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Fig.4 Distribution of surface currents in the Gulf Stream
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